Abstract

A beam-folding technique in optical interferometry, where the number of beam folds used can be very large, is reported. This technique can be used as a low-cost position-tracking method in a Fourier transform spectrometer (FTS) to cover the broad spectral range from UV to IR. The main advantage gained is the simple position-tracking algorithm used in sampling the interferogram. We have developed a UV–visible FTS, whose wavelength coverage is limited only by the optical elements (350nm1μm with off-the-shelf components). Preliminary results show that it can achieve a resolution of 4cm1 even with a ball-bearing translation stage.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Brault, Appl. Opt. 35, 2891 (1996).
    [CrossRef] [PubMed]
  2. S. Wartewig, IR and Raman Spectroscopy (Wiley-VCH, 2003).
    [CrossRef]
  3. F. Grandmont, L. Drissen, and G. Joncas, in Proc. SPIE 4842, 392 (2003).
    [CrossRef]
  4. J. C. Brasunas and G. M. Cushman, Appl. Opt. 36, 2206 (1997).
    [CrossRef] [PubMed]
  5. K. J. Wildeman, G. R. Ploeger, D. Snel, and J. J. Wijnbergen, Cryogenics 27, 68 (1987).
    [CrossRef]
  6. G. Michel, K. Dohlen, J. Martignac, J. C. Lecullier, P. Levacher, and C. Colin, Appl. Opt. 42, 6305 (2003).
    [CrossRef] [PubMed]
  7. N. J. Burton, C. L. Mok, and T. J. Parker, Opt. Commun. 45, 367 (1983).
    [CrossRef]
  8. P. Biggs, F. J. Holdsworth, and R. P. Wayne, J. Phys. E 20, 1005 (1987).
    [CrossRef]
  9. Y. Ellsworth and J. F. James, J. Phys. E 6, 1134 (1973).
    [CrossRef]
  10. R. P. Cageao, J. F. Blavier, J. P. McGuire, Y. B. Jiang, V. Nemtchinov, F. P. Mills, and S. P. Sander, Appl. Opt. 40, 2024 (2001).
    [CrossRef]
  11. A. P. Thorne, C. J. Harris, I. Wynne-Jones, R. C. M. Leanear, and G. Cox, J. Phys. E 20, 54 (1987).
    [CrossRef]

2003 (2)

2001 (1)

1997 (1)

1996 (1)

1987 (3)

K. J. Wildeman, G. R. Ploeger, D. Snel, and J. J. Wijnbergen, Cryogenics 27, 68 (1987).
[CrossRef]

A. P. Thorne, C. J. Harris, I. Wynne-Jones, R. C. M. Leanear, and G. Cox, J. Phys. E 20, 54 (1987).
[CrossRef]

P. Biggs, F. J. Holdsworth, and R. P. Wayne, J. Phys. E 20, 1005 (1987).
[CrossRef]

1983 (1)

N. J. Burton, C. L. Mok, and T. J. Parker, Opt. Commun. 45, 367 (1983).
[CrossRef]

1973 (1)

Y. Ellsworth and J. F. James, J. Phys. E 6, 1134 (1973).
[CrossRef]

Biggs, P.

P. Biggs, F. J. Holdsworth, and R. P. Wayne, J. Phys. E 20, 1005 (1987).
[CrossRef]

Blavier, J. F.

Brasunas, J. C.

Brault, J. W.

Burton, N. J.

N. J. Burton, C. L. Mok, and T. J. Parker, Opt. Commun. 45, 367 (1983).
[CrossRef]

Cageao, R. P.

Colin, C.

Cox, G.

A. P. Thorne, C. J. Harris, I. Wynne-Jones, R. C. M. Leanear, and G. Cox, J. Phys. E 20, 54 (1987).
[CrossRef]

Cushman, G. M.

Dohlen, K.

Drissen, L.

F. Grandmont, L. Drissen, and G. Joncas, in Proc. SPIE 4842, 392 (2003).
[CrossRef]

Ellsworth, Y.

Y. Ellsworth and J. F. James, J. Phys. E 6, 1134 (1973).
[CrossRef]

Grandmont, F.

F. Grandmont, L. Drissen, and G. Joncas, in Proc. SPIE 4842, 392 (2003).
[CrossRef]

Harris, C. J.

A. P. Thorne, C. J. Harris, I. Wynne-Jones, R. C. M. Leanear, and G. Cox, J. Phys. E 20, 54 (1987).
[CrossRef]

Holdsworth, F. J.

P. Biggs, F. J. Holdsworth, and R. P. Wayne, J. Phys. E 20, 1005 (1987).
[CrossRef]

James, J. F.

Y. Ellsworth and J. F. James, J. Phys. E 6, 1134 (1973).
[CrossRef]

Jiang, Y. B.

Joncas, G.

F. Grandmont, L. Drissen, and G. Joncas, in Proc. SPIE 4842, 392 (2003).
[CrossRef]

Leanear, R. C. M.

A. P. Thorne, C. J. Harris, I. Wynne-Jones, R. C. M. Leanear, and G. Cox, J. Phys. E 20, 54 (1987).
[CrossRef]

Lecullier, J. C.

Levacher, P.

Martignac, J.

McGuire, J. P.

Michel, G.

Mills, F. P.

Mok, C. L.

N. J. Burton, C. L. Mok, and T. J. Parker, Opt. Commun. 45, 367 (1983).
[CrossRef]

Nemtchinov, V.

Parker, T. J.

N. J. Burton, C. L. Mok, and T. J. Parker, Opt. Commun. 45, 367 (1983).
[CrossRef]

Ploeger, G. R.

K. J. Wildeman, G. R. Ploeger, D. Snel, and J. J. Wijnbergen, Cryogenics 27, 68 (1987).
[CrossRef]

Sander, S. P.

Snel, D.

K. J. Wildeman, G. R. Ploeger, D. Snel, and J. J. Wijnbergen, Cryogenics 27, 68 (1987).
[CrossRef]

Thorne, A. P.

A. P. Thorne, C. J. Harris, I. Wynne-Jones, R. C. M. Leanear, and G. Cox, J. Phys. E 20, 54 (1987).
[CrossRef]

Wartewig, S.

S. Wartewig, IR and Raman Spectroscopy (Wiley-VCH, 2003).
[CrossRef]

Wayne, R. P.

P. Biggs, F. J. Holdsworth, and R. P. Wayne, J. Phys. E 20, 1005 (1987).
[CrossRef]

Wijnbergen, J. J.

K. J. Wildeman, G. R. Ploeger, D. Snel, and J. J. Wijnbergen, Cryogenics 27, 68 (1987).
[CrossRef]

Wildeman, K. J.

K. J. Wildeman, G. R. Ploeger, D. Snel, and J. J. Wijnbergen, Cryogenics 27, 68 (1987).
[CrossRef]

Wynne-Jones, I.

A. P. Thorne, C. J. Harris, I. Wynne-Jones, R. C. M. Leanear, and G. Cox, J. Phys. E 20, 54 (1987).
[CrossRef]

Appl. Opt. (4)

Cryogenics (1)

K. J. Wildeman, G. R. Ploeger, D. Snel, and J. J. Wijnbergen, Cryogenics 27, 68 (1987).
[CrossRef]

J. Phys. E (3)

P. Biggs, F. J. Holdsworth, and R. P. Wayne, J. Phys. E 20, 1005 (1987).
[CrossRef]

Y. Ellsworth and J. F. James, J. Phys. E 6, 1134 (1973).
[CrossRef]

A. P. Thorne, C. J. Harris, I. Wynne-Jones, R. C. M. Leanear, and G. Cox, J. Phys. E 20, 54 (1987).
[CrossRef]

Opt. Commun. (1)

N. J. Burton, C. L. Mok, and T. J. Parker, Opt. Commun. 45, 367 (1983).
[CrossRef]

Proc. SPIE (1)

F. Grandmont, L. Drissen, and G. Joncas, in Proc. SPIE 4842, 392 (2003).
[CrossRef]

Other (1)

S. Wartewig, IR and Raman Spectroscopy (Wiley-VCH, 2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

High-order-path ultrasensitive interferometer.

Fig. 2
Fig. 2

Setup of the FTS based on the beam-folding technique.

Fig. 3
Fig. 3

Testing spectra detected by the FTS based on the beam-folding technique. The light sources and the scan distances are as follows: (a) He–Ne laser, 1.3 mm ; (b) He–Ne laser, 2.6 mm ; (c) YAG laser, 1.3 mm ; and (d) YAG laser, 2.6 mm . The values in parentheses indicate the calculated spectral resolutions.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I ( x ) = I 0 [ 1 + cos ( 4 π σ 0 x ) ] ,
I ( x ) = I 0 [ 1 + cos ( 4 N π σ 0 x ) ] ,
I t ( x ) = I t 0 cos ( 16 π σ 0 x ) ,
I m ( x ) = 0 B ( σ ) cos ( 4 π σ x ) d σ ,

Metrics