Abstract

A lensed photonic crystal fiber (PCF) is proposed as an effective element for an optical free-space interconnector. By simultaneously forming a beam-expansion region and a focusing lens on a single piece of PCF, effective coupling between PCFs could be achieved. A long working distance of up to 1mm with wide longitudinal and lateral tolerances was measured. The optical characteristics of the lensed PCFs and the connectors made from them are analyzed experimentally and theoretically.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Kim, M. Han, S. Chang, J. W. Lee, and K. Oh, IEEE Photon. Technol. Lett. 16, 249 (2004).
  2. S. Masatoyo, J. Lightwave Technol. 2, 305 (1984).
    [CrossRef]
  3. H. Yoda and K. Shiraishi, J. Lightwave Technol. 19, 1910 (2001).
    [CrossRef]
  4. K. Shiraishi, H. Ohnuki, N. Hiaguri, and K. Matsumura, J. Lightwave Technol. 15, 356 (1997).
    [CrossRef]
  5. P. Chanclou, J. Lightwave Technol. 17, 924 (1999).
    [CrossRef]
  6. B. H. Park, J. Kim, H. Y. Choi, and B. H. Lee, in OptoElectronics and Communications Conference, Vol. 13P-72 (Optical Society of Korea, 2004), p. 254.
  7. T. Hirooka, IEEE Photon. Technol. Lett. 16, 1071 (2004).
    [CrossRef]
  8. H. W. Kogelnik, Appl. Opt. 4, 1562 (1965).
    [CrossRef]
  9. W. L. Emkey, J. Lightwave Technol. 5, 1156 (1987).
    [CrossRef]

2004

J. Kim, M. Han, S. Chang, J. W. Lee, and K. Oh, IEEE Photon. Technol. Lett. 16, 249 (2004).

T. Hirooka, IEEE Photon. Technol. Lett. 16, 1071 (2004).
[CrossRef]

2001

1999

1997

K. Shiraishi, H. Ohnuki, N. Hiaguri, and K. Matsumura, J. Lightwave Technol. 15, 356 (1997).
[CrossRef]

1987

W. L. Emkey, J. Lightwave Technol. 5, 1156 (1987).
[CrossRef]

1984

S. Masatoyo, J. Lightwave Technol. 2, 305 (1984).
[CrossRef]

1965

Chanclou, P.

Chang, S.

J. Kim, M. Han, S. Chang, J. W. Lee, and K. Oh, IEEE Photon. Technol. Lett. 16, 249 (2004).

Choi, H. Y.

B. H. Park, J. Kim, H. Y. Choi, and B. H. Lee, in OptoElectronics and Communications Conference, Vol. 13P-72 (Optical Society of Korea, 2004), p. 254.

Emkey, W. L.

W. L. Emkey, J. Lightwave Technol. 5, 1156 (1987).
[CrossRef]

Han, M.

J. Kim, M. Han, S. Chang, J. W. Lee, and K. Oh, IEEE Photon. Technol. Lett. 16, 249 (2004).

Hiaguri, N.

K. Shiraishi, H. Ohnuki, N. Hiaguri, and K. Matsumura, J. Lightwave Technol. 15, 356 (1997).
[CrossRef]

Hirooka, T.

T. Hirooka, IEEE Photon. Technol. Lett. 16, 1071 (2004).
[CrossRef]

Kim, J.

J. Kim, M. Han, S. Chang, J. W. Lee, and K. Oh, IEEE Photon. Technol. Lett. 16, 249 (2004).

B. H. Park, J. Kim, H. Y. Choi, and B. H. Lee, in OptoElectronics and Communications Conference, Vol. 13P-72 (Optical Society of Korea, 2004), p. 254.

Kogelnik, H. W.

Lee, B. H.

B. H. Park, J. Kim, H. Y. Choi, and B. H. Lee, in OptoElectronics and Communications Conference, Vol. 13P-72 (Optical Society of Korea, 2004), p. 254.

Lee, J. W.

J. Kim, M. Han, S. Chang, J. W. Lee, and K. Oh, IEEE Photon. Technol. Lett. 16, 249 (2004).

Masatoyo, S.

S. Masatoyo, J. Lightwave Technol. 2, 305 (1984).
[CrossRef]

Matsumura, K.

K. Shiraishi, H. Ohnuki, N. Hiaguri, and K. Matsumura, J. Lightwave Technol. 15, 356 (1997).
[CrossRef]

Oh, K.

J. Kim, M. Han, S. Chang, J. W. Lee, and K. Oh, IEEE Photon. Technol. Lett. 16, 249 (2004).

Ohnuki, H.

K. Shiraishi, H. Ohnuki, N. Hiaguri, and K. Matsumura, J. Lightwave Technol. 15, 356 (1997).
[CrossRef]

Park, B. H.

B. H. Park, J. Kim, H. Y. Choi, and B. H. Lee, in OptoElectronics and Communications Conference, Vol. 13P-72 (Optical Society of Korea, 2004), p. 254.

Shiraishi, K.

H. Yoda and K. Shiraishi, J. Lightwave Technol. 19, 1910 (2001).
[CrossRef]

K. Shiraishi, H. Ohnuki, N. Hiaguri, and K. Matsumura, J. Lightwave Technol. 15, 356 (1997).
[CrossRef]

Yoda, H.

Appl. Opt.

IEEE Photon. Technol. Lett.

T. Hirooka, IEEE Photon. Technol. Lett. 16, 1071 (2004).
[CrossRef]

J. Kim, M. Han, S. Chang, J. W. Lee, and K. Oh, IEEE Photon. Technol. Lett. 16, 249 (2004).

J. Lightwave Technol.

S. Masatoyo, J. Lightwave Technol. 2, 305 (1984).
[CrossRef]

H. Yoda and K. Shiraishi, J. Lightwave Technol. 19, 1910 (2001).
[CrossRef]

K. Shiraishi, H. Ohnuki, N. Hiaguri, and K. Matsumura, J. Lightwave Technol. 15, 356 (1997).
[CrossRef]

P. Chanclou, J. Lightwave Technol. 17, 924 (1999).
[CrossRef]

W. L. Emkey, J. Lightwave Technol. 5, 1156 (1987).
[CrossRef]

Other

B. H. Park, J. Kim, H. Y. Choi, and B. H. Lee, in OptoElectronics and Communications Conference, Vol. 13P-72 (Optical Society of Korea, 2004), p. 254.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(Color online) Implementation (top) and schematic diagram (bottom) of the lensed PCF.

Fig. 2
Fig. 2

Light-intensity image of the beam coming out of a PCF (a) before and (b) after application of the proposed arc discharge on the PCF. The image in (a) was taken at the end face of an original normal PCF, and the one in (b) was taken at the beam waist after formation of the lens and the beam-expanding region.

Fig. 3
Fig. 3

(Color online) Coupling loss between two identical lensed PCFs measured with respect to longitudinal offset.

Fig. 4
Fig. 4

(Color online) Coupling loss between two identical lensed PCFs measured with respect to the transverse offset.

Fig. 5
Fig. 5

Simulated (solid curve) and measured (open circles) working distances between two identical lensed PCFs.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

M = M 34 M 23 M 12 = [ A B C D ] ,
M 12 = [ 1 l c 0 1 ] , M 23 = [ 1 0 n 2 n 1 n 2 R n 1 n 2 ] ,
M 34 = [ 1 l f 0 1 ] ,
A C a 2 + B D = 0 ,
a = λ n 1 π w 0 2 .

Metrics