Abstract

The design and operating parameters of a new class of continuously distributed optical fiber sensor are described. By use of counterpropagating pulses, two-photon excitation of fluorescence from ions doped into the fiber enables any position to be monitored. By this means temperature and also strain may be sensed with high spatial and temporal resolution. As the doped fiber is transparent for single-photon absorption at the wavelength of the light pulses, attenuation does not set an upper limit to its length.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. T. V. Grattan, R. K. Selli, and A. W. Palmer, Rev. Sci. Instrum. 58, 1231 (1987).
    [CrossRef]
  2. T. Sun, Z. Y. Zhang, K. T. V. Grattan, and A. W. Palmer, Rev. Sci. Instrum. 70, 1447 (1999).
    [CrossRef]
  3. S. A. Wade, G. W. Baxter, S. F. Collins, K. T. V. Grattan, and T. Sun, Rev. Sci. Instrum. 71, 2267 (2000).
    [CrossRef]
  4. T. P. J. Han and I. S. Ruddock, 'Temperature sensing,' British patent 0420238.8 (September 11, 2004).
  5. I. S. Ruddock and T. P. J. Han, J. Phys. Conf. Ser. 15, 83 (2005).
    [CrossRef]
  6. Z. Y. Zhang, K. T. V. Grattan, and B. T. Meggitt, Rev. Sci. Instrum. 71, 1614 (2000).
    [CrossRef]
  7. H. Mahr, in Quantum Electronics: Nonlinear Optics, H.Rabin and C.L.Tang, eds. (Academic, 1975), Vol. 1, p. 287.
  8. L. L. Chase and S. A. Payne, Phys. Rev. B 34, 8883 (1986).
    [CrossRef]
  9. J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, Electron. Lett. 21, 569 (1985).
    [CrossRef]
  10. D. Culverhouse, F. Farahi, C. N. Pannel, and D. A. Jackson, Electron. Lett. 25, 913 (1989).
    [CrossRef]
  11. X. Bao, D. J. Webb, and D. A. Jackson, Opt. Commun. 104, 298 (1994).
    [CrossRef]
  12. T. Sun, Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, and S. F. Collins, Rev. Sci. Instrum. 68, 3447 (1997).
    [CrossRef]
  13. Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, and B. T. Meggitt, Rev. Sci. Instrum. 68, 2759 (1997).
    [CrossRef]
  14. Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, and T. Sun, Rev. Sci. Instrum. 68, 2764 (1997).
    [CrossRef]
  15. T. Sun, Z. Y. Zhang, K. T. V. Grattan, and A. W. Palmer, Rev. Sci. Instrum. 69, 4179 (1998).
    [CrossRef]

2005 (1)

I. S. Ruddock and T. P. J. Han, J. Phys. Conf. Ser. 15, 83 (2005).
[CrossRef]

2000 (2)

Z. Y. Zhang, K. T. V. Grattan, and B. T. Meggitt, Rev. Sci. Instrum. 71, 1614 (2000).
[CrossRef]

S. A. Wade, G. W. Baxter, S. F. Collins, K. T. V. Grattan, and T. Sun, Rev. Sci. Instrum. 71, 2267 (2000).
[CrossRef]

1999 (1)

T. Sun, Z. Y. Zhang, K. T. V. Grattan, and A. W. Palmer, Rev. Sci. Instrum. 70, 1447 (1999).
[CrossRef]

1998 (1)

T. Sun, Z. Y. Zhang, K. T. V. Grattan, and A. W. Palmer, Rev. Sci. Instrum. 69, 4179 (1998).
[CrossRef]

1997 (3)

T. Sun, Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, and S. F. Collins, Rev. Sci. Instrum. 68, 3447 (1997).
[CrossRef]

Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, and B. T. Meggitt, Rev. Sci. Instrum. 68, 2759 (1997).
[CrossRef]

Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, and T. Sun, Rev. Sci. Instrum. 68, 2764 (1997).
[CrossRef]

1994 (1)

X. Bao, D. J. Webb, and D. A. Jackson, Opt. Commun. 104, 298 (1994).
[CrossRef]

1989 (1)

D. Culverhouse, F. Farahi, C. N. Pannel, and D. A. Jackson, Electron. Lett. 25, 913 (1989).
[CrossRef]

1987 (1)

K. T. V. Grattan, R. K. Selli, and A. W. Palmer, Rev. Sci. Instrum. 58, 1231 (1987).
[CrossRef]

1986 (1)

L. L. Chase and S. A. Payne, Phys. Rev. B 34, 8883 (1986).
[CrossRef]

1985 (1)

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, Electron. Lett. 21, 569 (1985).
[CrossRef]

Bao, X.

X. Bao, D. J. Webb, and D. A. Jackson, Opt. Commun. 104, 298 (1994).
[CrossRef]

Baxter, G. W.

S. A. Wade, G. W. Baxter, S. F. Collins, K. T. V. Grattan, and T. Sun, Rev. Sci. Instrum. 71, 2267 (2000).
[CrossRef]

Bibby, G. W.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, Electron. Lett. 21, 569 (1985).
[CrossRef]

Chase, L. L.

L. L. Chase and S. A. Payne, Phys. Rev. B 34, 8883 (1986).
[CrossRef]

Collins, S. F.

S. A. Wade, G. W. Baxter, S. F. Collins, K. T. V. Grattan, and T. Sun, Rev. Sci. Instrum. 71, 2267 (2000).
[CrossRef]

T. Sun, Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, and S. F. Collins, Rev. Sci. Instrum. 68, 3447 (1997).
[CrossRef]

Culverhouse, D.

D. Culverhouse, F. Farahi, C. N. Pannel, and D. A. Jackson, Electron. Lett. 25, 913 (1989).
[CrossRef]

Dakin, J. P.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, Electron. Lett. 21, 569 (1985).
[CrossRef]

Farahi, F.

D. Culverhouse, F. Farahi, C. N. Pannel, and D. A. Jackson, Electron. Lett. 25, 913 (1989).
[CrossRef]

Grattan, K. T. V.

S. A. Wade, G. W. Baxter, S. F. Collins, K. T. V. Grattan, and T. Sun, Rev. Sci. Instrum. 71, 2267 (2000).
[CrossRef]

Z. Y. Zhang, K. T. V. Grattan, and B. T. Meggitt, Rev. Sci. Instrum. 71, 1614 (2000).
[CrossRef]

T. Sun, Z. Y. Zhang, K. T. V. Grattan, and A. W. Palmer, Rev. Sci. Instrum. 70, 1447 (1999).
[CrossRef]

T. Sun, Z. Y. Zhang, K. T. V. Grattan, and A. W. Palmer, Rev. Sci. Instrum. 69, 4179 (1998).
[CrossRef]

Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, and B. T. Meggitt, Rev. Sci. Instrum. 68, 2759 (1997).
[CrossRef]

Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, and T. Sun, Rev. Sci. Instrum. 68, 2764 (1997).
[CrossRef]

T. Sun, Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, and S. F. Collins, Rev. Sci. Instrum. 68, 3447 (1997).
[CrossRef]

K. T. V. Grattan, R. K. Selli, and A. W. Palmer, Rev. Sci. Instrum. 58, 1231 (1987).
[CrossRef]

Han, T. P. J.

I. S. Ruddock and T. P. J. Han, J. Phys. Conf. Ser. 15, 83 (2005).
[CrossRef]

T. P. J. Han and I. S. Ruddock, 'Temperature sensing,' British patent 0420238.8 (September 11, 2004).

Jackson, D. A.

X. Bao, D. J. Webb, and D. A. Jackson, Opt. Commun. 104, 298 (1994).
[CrossRef]

D. Culverhouse, F. Farahi, C. N. Pannel, and D. A. Jackson, Electron. Lett. 25, 913 (1989).
[CrossRef]

Mahr, H.

H. Mahr, in Quantum Electronics: Nonlinear Optics, H.Rabin and C.L.Tang, eds. (Academic, 1975), Vol. 1, p. 287.

Meggitt, B. T.

Z. Y. Zhang, K. T. V. Grattan, and B. T. Meggitt, Rev. Sci. Instrum. 71, 1614 (2000).
[CrossRef]

Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, and B. T. Meggitt, Rev. Sci. Instrum. 68, 2759 (1997).
[CrossRef]

Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, and T. Sun, Rev. Sci. Instrum. 68, 2764 (1997).
[CrossRef]

Palmer, A. W.

T. Sun, Z. Y. Zhang, K. T. V. Grattan, and A. W. Palmer, Rev. Sci. Instrum. 70, 1447 (1999).
[CrossRef]

T. Sun, Z. Y. Zhang, K. T. V. Grattan, and A. W. Palmer, Rev. Sci. Instrum. 69, 4179 (1998).
[CrossRef]

Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, and B. T. Meggitt, Rev. Sci. Instrum. 68, 2759 (1997).
[CrossRef]

T. Sun, Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, and S. F. Collins, Rev. Sci. Instrum. 68, 3447 (1997).
[CrossRef]

Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, and T. Sun, Rev. Sci. Instrum. 68, 2764 (1997).
[CrossRef]

K. T. V. Grattan, R. K. Selli, and A. W. Palmer, Rev. Sci. Instrum. 58, 1231 (1987).
[CrossRef]

Pannel, C. N.

D. Culverhouse, F. Farahi, C. N. Pannel, and D. A. Jackson, Electron. Lett. 25, 913 (1989).
[CrossRef]

Payne, S. A.

L. L. Chase and S. A. Payne, Phys. Rev. B 34, 8883 (1986).
[CrossRef]

Pratt, D. J.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, Electron. Lett. 21, 569 (1985).
[CrossRef]

Ross, J. N.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, Electron. Lett. 21, 569 (1985).
[CrossRef]

Ruddock, I. S.

I. S. Ruddock and T. P. J. Han, J. Phys. Conf. Ser. 15, 83 (2005).
[CrossRef]

T. P. J. Han and I. S. Ruddock, 'Temperature sensing,' British patent 0420238.8 (September 11, 2004).

Selli, R. K.

K. T. V. Grattan, R. K. Selli, and A. W. Palmer, Rev. Sci. Instrum. 58, 1231 (1987).
[CrossRef]

Sun, T.

S. A. Wade, G. W. Baxter, S. F. Collins, K. T. V. Grattan, and T. Sun, Rev. Sci. Instrum. 71, 2267 (2000).
[CrossRef]

T. Sun, Z. Y. Zhang, K. T. V. Grattan, and A. W. Palmer, Rev. Sci. Instrum. 70, 1447 (1999).
[CrossRef]

T. Sun, Z. Y. Zhang, K. T. V. Grattan, and A. W. Palmer, Rev. Sci. Instrum. 69, 4179 (1998).
[CrossRef]

T. Sun, Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, and S. F. Collins, Rev. Sci. Instrum. 68, 3447 (1997).
[CrossRef]

Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, and T. Sun, Rev. Sci. Instrum. 68, 2764 (1997).
[CrossRef]

Wade, S. A.

S. A. Wade, G. W. Baxter, S. F. Collins, K. T. V. Grattan, and T. Sun, Rev. Sci. Instrum. 71, 2267 (2000).
[CrossRef]

Webb, D. J.

X. Bao, D. J. Webb, and D. A. Jackson, Opt. Commun. 104, 298 (1994).
[CrossRef]

Zhang, Z. Y.

Z. Y. Zhang, K. T. V. Grattan, and B. T. Meggitt, Rev. Sci. Instrum. 71, 1614 (2000).
[CrossRef]

T. Sun, Z. Y. Zhang, K. T. V. Grattan, and A. W. Palmer, Rev. Sci. Instrum. 70, 1447 (1999).
[CrossRef]

T. Sun, Z. Y. Zhang, K. T. V. Grattan, and A. W. Palmer, Rev. Sci. Instrum. 69, 4179 (1998).
[CrossRef]

Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, and B. T. Meggitt, Rev. Sci. Instrum. 68, 2759 (1997).
[CrossRef]

T. Sun, Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, and S. F. Collins, Rev. Sci. Instrum. 68, 3447 (1997).
[CrossRef]

Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, and T. Sun, Rev. Sci. Instrum. 68, 2764 (1997).
[CrossRef]

Electron. Lett. (2)

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, Electron. Lett. 21, 569 (1985).
[CrossRef]

D. Culverhouse, F. Farahi, C. N. Pannel, and D. A. Jackson, Electron. Lett. 25, 913 (1989).
[CrossRef]

J. Phys. Conf. Ser. (1)

I. S. Ruddock and T. P. J. Han, J. Phys. Conf. Ser. 15, 83 (2005).
[CrossRef]

Opt. Commun. (1)

X. Bao, D. J. Webb, and D. A. Jackson, Opt. Commun. 104, 298 (1994).
[CrossRef]

Phys. Rev. B (1)

L. L. Chase and S. A. Payne, Phys. Rev. B 34, 8883 (1986).
[CrossRef]

Rev. Sci. Instrum. (8)

Z. Y. Zhang, K. T. V. Grattan, and B. T. Meggitt, Rev. Sci. Instrum. 71, 1614 (2000).
[CrossRef]

T. Sun, Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, and S. F. Collins, Rev. Sci. Instrum. 68, 3447 (1997).
[CrossRef]

Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, and B. T. Meggitt, Rev. Sci. Instrum. 68, 2759 (1997).
[CrossRef]

Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, and T. Sun, Rev. Sci. Instrum. 68, 2764 (1997).
[CrossRef]

T. Sun, Z. Y. Zhang, K. T. V. Grattan, and A. W. Palmer, Rev. Sci. Instrum. 69, 4179 (1998).
[CrossRef]

K. T. V. Grattan, R. K. Selli, and A. W. Palmer, Rev. Sci. Instrum. 58, 1231 (1987).
[CrossRef]

T. Sun, Z. Y. Zhang, K. T. V. Grattan, and A. W. Palmer, Rev. Sci. Instrum. 70, 1447 (1999).
[CrossRef]

S. A. Wade, G. W. Baxter, S. F. Collins, K. T. V. Grattan, and T. Sun, Rev. Sci. Instrum. 71, 2267 (2000).
[CrossRef]

Other (2)

T. P. J. Han and I. S. Ruddock, 'Temperature sensing,' British patent 0420238.8 (September 11, 2004).

H. Mahr, in Quantum Electronics: Nonlinear Optics, H.Rabin and C.L.Tang, eds. (Academic, 1975), Vol. 1, p. 287.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Schematic diagram of a distributed sensor based on TPF in a doped optical fiber. Counterpropagating pulses A and B meet at a location that depends on their relative time delay.

Fig. 2
Fig. 2

Computed time dependence of the normalized TPF signal detected from a Tm-doped fiber of 50 m length with Gaussian pulses of 1 ns duration overlapping at the fiber’s midpoint. The time origin is the instant of overlap. The fluorescence decay time for emission at 1.9 μ m is 90 μ s , except at the position of overlap, where it is 75, 55, or 38 μ s for assumed local temperatures of 200 ° C , 400 ° C and 600 ° C , respectively.[6] (a) Non-background-free generation with N B N A = 10 and wavelengths such that only the less-intense pulses cause TPF to occur on their own. (b) Background-free generation.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d P ( t ) TPF = h υ 2 A σ N 1 [ n 2 ( t ) d t ] [ exp ( t τ ) τ ] d l = 2 ln 2 h υ 2 σ N 1 N 2 A t p [ exp ( t τ ) τ ] d l ,
P A ( t ) TPF = ln 2 2 π h υ 2 σ N 1 N A 2 v A t p exp ( t τ ) exp ( Δ T τ ) [ exp ( T τ ) exp ( T τ ) ] , t Δ T ,
P B ( t ) TPF = 2 ln 2 π h υ 2 σ N 1 N B 2 v A t p exp ( t τ ) [ 1 exp ( T τ ) ] , t 0 .
Δ P ( t ) TPF = 2 h υ 2 σ N 1 N A N B v A [ exp ( t τ H ) τ H ] , t 0 .
P ( t ) TPF = exp ( t τ ) + 2 2 π ln 2 N B N A { exp ( t τ H ) exp ( Δ T τ ) [ exp ( T τ ) exp ( T τ ) ] } t p τ H + 2 N B 2 N A 2 { exp ( t τ ) [ 1 exp ( T τ ) ] exp ( Δ T τ ) [ exp ( T τ ) exp ( T τ ) ] } , t 0 .

Metrics