Abstract

The intensity-dependent polarization rotation caused by the self-induced nonlinear birefringence in a long twisted fiber is studied numerically and experimentally. By using a 1km length of twisted fiber, we show that the effect of ellipse rotation accumulates monotonically as if the fiber were perfectly isotropic. Such behavior cannot be observed in a typical nontwisted fiber with randomly varying birefringence and is a unique feature of the twisted fiber, in which the large circular birefringence plays an essential role of preserving the handedness of elliptical polarization. We demonstrate a novel Faraday-mirror configuration to ensure automatic polarization alignment, which is directly applicable to achieving a simple and stable intensity discriminator.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. D. Maker and R. W. Terhune, Phys. Rev. 137, A801 (1965).
    [CrossRef]
  2. J. M. Thorne, T. R. Loree, and G. H. McCall, Appl. Phys. Lett. 22, 259 (1972).
    [CrossRef]
  3. B. Nikolaus, D. Grischkowsky, and A. C. Balant, Opt. Lett. 8, 189 (1983).
    [CrossRef] [PubMed]
  4. R. H. Stolen, J. Botineau, and A. Ashkin, Opt. Lett. 7, 512 (1982).
    [CrossRef] [PubMed]
  5. H. G. Winful, Appl. Phys. Lett. 47, 213 (1985).
    [CrossRef]
  6. P. Ferro, M. Haelterman, S. Trillo, S. Wabnitz, and B. Daino, Electron. Lett. 27, 1407 (1991).
    [CrossRef]
  7. H. G. Winful and A. Hu, Opt. Lett. 11, 668 (1986).
    [CrossRef] [PubMed]
  8. F. Matera and S. Wabnitz, Opt. Lett. 11, 467 (1986).
    [CrossRef] [PubMed]
  9. P. K. A. Wai and C. R. Menyuk, J. Lightwave Technol. 14, 148 (1996).
    [CrossRef]
  10. Y. Liang, J. W. Lou, J. K. Andersen, J. C. Stocker, O. Boyraz, M. N. Islam, and D. A. Nolan, Opt. Lett. 24, 726 (1999).
    [CrossRef]
  11. T. Tanemura, J. Suzuki, K. Katoh, and K. Kikuchi, IEEE Photon. Technol. Lett. 17, 1052 (2005).
    [CrossRef]
  12. T. Tanemura, K. Katoh, and K. Kikuchi, Opt. Express 13, 7497 (2005).
    [CrossRef] [PubMed]
  13. H. A. Haus, E. P. Ippen, and K. Tamura, IEEE J. Quantum Electron. 30, 200 (1994).
    [CrossRef]

2005 (2)

T. Tanemura, J. Suzuki, K. Katoh, and K. Kikuchi, IEEE Photon. Technol. Lett. 17, 1052 (2005).
[CrossRef]

T. Tanemura, K. Katoh, and K. Kikuchi, Opt. Express 13, 7497 (2005).
[CrossRef] [PubMed]

1999 (1)

1996 (1)

P. K. A. Wai and C. R. Menyuk, J. Lightwave Technol. 14, 148 (1996).
[CrossRef]

1994 (1)

H. A. Haus, E. P. Ippen, and K. Tamura, IEEE J. Quantum Electron. 30, 200 (1994).
[CrossRef]

1991 (1)

P. Ferro, M. Haelterman, S. Trillo, S. Wabnitz, and B. Daino, Electron. Lett. 27, 1407 (1991).
[CrossRef]

1986 (2)

1985 (1)

H. G. Winful, Appl. Phys. Lett. 47, 213 (1985).
[CrossRef]

1983 (1)

1982 (1)

1972 (1)

J. M. Thorne, T. R. Loree, and G. H. McCall, Appl. Phys. Lett. 22, 259 (1972).
[CrossRef]

1965 (1)

P. D. Maker and R. W. Terhune, Phys. Rev. 137, A801 (1965).
[CrossRef]

Andersen, J. K.

Ashkin, A.

Balant, A. C.

Botineau, J.

Boyraz, O.

Daino, B.

P. Ferro, M. Haelterman, S. Trillo, S. Wabnitz, and B. Daino, Electron. Lett. 27, 1407 (1991).
[CrossRef]

Ferro, P.

P. Ferro, M. Haelterman, S. Trillo, S. Wabnitz, and B. Daino, Electron. Lett. 27, 1407 (1991).
[CrossRef]

Grischkowsky, D.

Haelterman, M.

P. Ferro, M. Haelterman, S. Trillo, S. Wabnitz, and B. Daino, Electron. Lett. 27, 1407 (1991).
[CrossRef]

Haus, H. A.

H. A. Haus, E. P. Ippen, and K. Tamura, IEEE J. Quantum Electron. 30, 200 (1994).
[CrossRef]

Hu, A.

Ippen, E. P.

H. A. Haus, E. P. Ippen, and K. Tamura, IEEE J. Quantum Electron. 30, 200 (1994).
[CrossRef]

Islam, M. N.

Katoh, K.

T. Tanemura, J. Suzuki, K. Katoh, and K. Kikuchi, IEEE Photon. Technol. Lett. 17, 1052 (2005).
[CrossRef]

T. Tanemura, K. Katoh, and K. Kikuchi, Opt. Express 13, 7497 (2005).
[CrossRef] [PubMed]

Kikuchi, K.

T. Tanemura, K. Katoh, and K. Kikuchi, Opt. Express 13, 7497 (2005).
[CrossRef] [PubMed]

T. Tanemura, J. Suzuki, K. Katoh, and K. Kikuchi, IEEE Photon. Technol. Lett. 17, 1052 (2005).
[CrossRef]

Liang, Y.

Loree, T. R.

J. M. Thorne, T. R. Loree, and G. H. McCall, Appl. Phys. Lett. 22, 259 (1972).
[CrossRef]

Lou, J. W.

Maker, P. D.

P. D. Maker and R. W. Terhune, Phys. Rev. 137, A801 (1965).
[CrossRef]

Matera, F.

McCall, G. H.

J. M. Thorne, T. R. Loree, and G. H. McCall, Appl. Phys. Lett. 22, 259 (1972).
[CrossRef]

Menyuk, C. R.

P. K. A. Wai and C. R. Menyuk, J. Lightwave Technol. 14, 148 (1996).
[CrossRef]

Nikolaus, B.

Nolan, D. A.

Stocker, J. C.

Stolen, R. H.

Suzuki, J.

T. Tanemura, J. Suzuki, K. Katoh, and K. Kikuchi, IEEE Photon. Technol. Lett. 17, 1052 (2005).
[CrossRef]

Tamura, K.

H. A. Haus, E. P. Ippen, and K. Tamura, IEEE J. Quantum Electron. 30, 200 (1994).
[CrossRef]

Tanemura, T.

T. Tanemura, K. Katoh, and K. Kikuchi, Opt. Express 13, 7497 (2005).
[CrossRef] [PubMed]

T. Tanemura, J. Suzuki, K. Katoh, and K. Kikuchi, IEEE Photon. Technol. Lett. 17, 1052 (2005).
[CrossRef]

Terhune, R. W.

P. D. Maker and R. W. Terhune, Phys. Rev. 137, A801 (1965).
[CrossRef]

Thorne, J. M.

J. M. Thorne, T. R. Loree, and G. H. McCall, Appl. Phys. Lett. 22, 259 (1972).
[CrossRef]

Trillo, S.

P. Ferro, M. Haelterman, S. Trillo, S. Wabnitz, and B. Daino, Electron. Lett. 27, 1407 (1991).
[CrossRef]

Wabnitz, S.

P. Ferro, M. Haelterman, S. Trillo, S. Wabnitz, and B. Daino, Electron. Lett. 27, 1407 (1991).
[CrossRef]

F. Matera and S. Wabnitz, Opt. Lett. 11, 467 (1986).
[CrossRef] [PubMed]

Wai, P. K. A.

P. K. A. Wai and C. R. Menyuk, J. Lightwave Technol. 14, 148 (1996).
[CrossRef]

Winful, H. G.

Appl. Phys. Lett. (2)

H. G. Winful, Appl. Phys. Lett. 47, 213 (1985).
[CrossRef]

J. M. Thorne, T. R. Loree, and G. H. McCall, Appl. Phys. Lett. 22, 259 (1972).
[CrossRef]

Electron. Lett. (1)

P. Ferro, M. Haelterman, S. Trillo, S. Wabnitz, and B. Daino, Electron. Lett. 27, 1407 (1991).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. A. Haus, E. P. Ippen, and K. Tamura, IEEE J. Quantum Electron. 30, 200 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Tanemura, J. Suzuki, K. Katoh, and K. Kikuchi, IEEE Photon. Technol. Lett. 17, 1052 (2005).
[CrossRef]

J. Lightwave Technol. (1)

P. K. A. Wai and C. R. Menyuk, J. Lightwave Technol. 14, 148 (1996).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Phys. Rev. (1)

P. D. Maker and R. W. Terhune, Phys. Rev. 137, A801 (1965).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Evolution of the calibrated Stokes parameters, S ̂ 1 (solid curves), S ̂ 2 (long-dashed curves), and S ̂ 3 (short-dashed curves), calculated for (a) a perfectly isotropic fiber, (b) a non-PM fiber with a beat length of 5 m and a birefringence decorrelation length of 20 m , and the same non-PM fiber twisted at (c) 5, (b) 10, (e) 15, and (f) 20   turns m .

Fig. 2
Fig. 2

Experimental setup: CW-LD, continuous-wave laser diode. EDFA, erbium-doped fiber amplifier. Other abbreviations defined in text.

Fig. 3
Fig. 3

Transmission characteristics of quasi-cw light measured for a twisted DSF with three adjustments of PC2 and a non-twisted DSF with PC2 adjusted to maximize the transmission. Solid curves are calculated from Eq. (2) with S 3 = 0.18 , 0.28, 0.54 to best fit the measured data.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d S d z = [ Ω L ( z ) + Ω NL ( S ) ] × S ,
P out = T P ( 1 S 3 2 ) 2 { 1 cos [ 2 γ ( 1 T ) P S 3 L 3 ] } ,

Metrics