Abstract

We explore the dependence of power losses on average plastic energy densities as rays propagate along deformed polymer optical fibers (POFs). The variation of power losses in deformed POFs with different bend radii and elongations are measured and analyzed. Three-dimensional elastic-plastic finite-element models are used to calculate average plastic energy densities in deformed POFs. The results indicate that the average plastic energy density introduced in a deformed POF can be considered a key index with which to study the power loss. Based on the experimental results, a curve-fitted equation is proposed for estimating the power loss by using the average plastic energy density for various bend radii.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Losada, I. Garcés, J. Mateo, J. Salinas, J. Lou, and J. Zubia, J. Lightwave Technol. 20, 1160 (2002).
    [CrossRef]
  2. J. Arrue and J. Zubia, IEE Proc. Optoelectron. 143, 135 (1996).
    [CrossRef]
  3. J. Arrue, J. Zubia, G. Fuster, and D. Kalymnios, IEE Proc. Optoelectron. 145, 313 (1998).
    [CrossRef]
  4. G. Durana, J. Zubia, J. Arrue, G. Aldabaldetreku, and J. Mateo, Appl. Opt. 42, 997 (2003).
    [CrossRef] [PubMed]
  5. J. Zubia, J. Arrue, and A. Mendioroz, Opt. Fiber Technol. 3, 152 (1997).
    [CrossRef]
  6. H. Tai and R. Rogowski, Opt. Fiber Technol. 8, 162 (2002).
    [CrossRef]
  7. Y. C. Chen, L. W. Chen, and P. C. Chen, Opt. Lett. 30, 230 (2005).
    [CrossRef] [PubMed]
  8. M. Huang, Int. J. Solids Struct. 40, 1615 (2003).
    [CrossRef]
  9. G. Keiser, Optical Fiber Communications (McGraw-Hill, 2000), Chap. 3.
  10. T. Sugita, Appl. Opt. 40, 897 (2001).
    [CrossRef]
  11. J. Zubia and J. Arrue, Opt. Fiber Technol. 7, 101 (2001).
    [CrossRef]

2005 (1)

2003 (2)

2002 (2)

2001 (2)

T. Sugita, Appl. Opt. 40, 897 (2001).
[CrossRef]

J. Zubia and J. Arrue, Opt. Fiber Technol. 7, 101 (2001).
[CrossRef]

1998 (1)

J. Arrue, J. Zubia, G. Fuster, and D. Kalymnios, IEE Proc. Optoelectron. 145, 313 (1998).
[CrossRef]

1997 (1)

J. Zubia, J. Arrue, and A. Mendioroz, Opt. Fiber Technol. 3, 152 (1997).
[CrossRef]

1996 (1)

J. Arrue and J. Zubia, IEE Proc. Optoelectron. 143, 135 (1996).
[CrossRef]

Aldabaldetreku, G.

Arrue, J.

G. Durana, J. Zubia, J. Arrue, G. Aldabaldetreku, and J. Mateo, Appl. Opt. 42, 997 (2003).
[CrossRef] [PubMed]

J. Zubia and J. Arrue, Opt. Fiber Technol. 7, 101 (2001).
[CrossRef]

J. Arrue, J. Zubia, G. Fuster, and D. Kalymnios, IEE Proc. Optoelectron. 145, 313 (1998).
[CrossRef]

J. Zubia, J. Arrue, and A. Mendioroz, Opt. Fiber Technol. 3, 152 (1997).
[CrossRef]

J. Arrue and J. Zubia, IEE Proc. Optoelectron. 143, 135 (1996).
[CrossRef]

Chen, L. W.

Chen, P. C.

Chen, Y. C.

Durana, G.

Fuster, G.

J. Arrue, J. Zubia, G. Fuster, and D. Kalymnios, IEE Proc. Optoelectron. 145, 313 (1998).
[CrossRef]

Garcés, I.

Huang, M.

M. Huang, Int. J. Solids Struct. 40, 1615 (2003).
[CrossRef]

Kalymnios, D.

J. Arrue, J. Zubia, G. Fuster, and D. Kalymnios, IEE Proc. Optoelectron. 145, 313 (1998).
[CrossRef]

Keiser, G.

G. Keiser, Optical Fiber Communications (McGraw-Hill, 2000), Chap. 3.

Losada, M. A.

Lou, J.

Mateo, J.

Mendioroz, A.

J. Zubia, J. Arrue, and A. Mendioroz, Opt. Fiber Technol. 3, 152 (1997).
[CrossRef]

Rogowski, R.

H. Tai and R. Rogowski, Opt. Fiber Technol. 8, 162 (2002).
[CrossRef]

Salinas, J.

Sugita, T.

Tai, H.

H. Tai and R. Rogowski, Opt. Fiber Technol. 8, 162 (2002).
[CrossRef]

Zubia, J.

G. Durana, J. Zubia, J. Arrue, G. Aldabaldetreku, and J. Mateo, Appl. Opt. 42, 997 (2003).
[CrossRef] [PubMed]

M. A. Losada, I. Garcés, J. Mateo, J. Salinas, J. Lou, and J. Zubia, J. Lightwave Technol. 20, 1160 (2002).
[CrossRef]

J. Zubia and J. Arrue, Opt. Fiber Technol. 7, 101 (2001).
[CrossRef]

J. Arrue, J. Zubia, G. Fuster, and D. Kalymnios, IEE Proc. Optoelectron. 145, 313 (1998).
[CrossRef]

J. Zubia, J. Arrue, and A. Mendioroz, Opt. Fiber Technol. 3, 152 (1997).
[CrossRef]

J. Arrue and J. Zubia, IEE Proc. Optoelectron. 143, 135 (1996).
[CrossRef]

Appl. Opt. (2)

IEE Proc. Optoelectron. (2)

J. Arrue and J. Zubia, IEE Proc. Optoelectron. 143, 135 (1996).
[CrossRef]

J. Arrue, J. Zubia, G. Fuster, and D. Kalymnios, IEE Proc. Optoelectron. 145, 313 (1998).
[CrossRef]

Int. J. Solids Struct. (1)

M. Huang, Int. J. Solids Struct. 40, 1615 (2003).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Fiber Technol. (3)

J. Zubia and J. Arrue, Opt. Fiber Technol. 7, 101 (2001).
[CrossRef]

J. Zubia, J. Arrue, and A. Mendioroz, Opt. Fiber Technol. 3, 152 (1997).
[CrossRef]

H. Tai and R. Rogowski, Opt. Fiber Technol. 8, 162 (2002).
[CrossRef]

Opt. Lett. (1)

Other (1)

G. Keiser, Optical Fiber Communications (McGraw-Hill, 2000), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for the power loss measurement of POFs: M, material test machine; δ, elongation; R, cylinder radius; l, half-length of a loaded POF.

Fig. 2
Fig. 2

Dependence of power ratio P out P in on elongation ratio ϵ and APED u ¯ p for various radii of curvature R.

Fig. 3
Fig. 3

Axial stress and plastic energy density distributions in a deformed POF: (a) axial stress, (b) plastic energy density.

Fig. 4
Fig. 4

Variations in APED u ¯ p obtained from the FEM and experimental tests for various radii of curvature R.

Fig. 5
Fig. 5

Dependence of normalized power ratio η ¯ on APED u ¯ p for various radii of curvature R.

Tables (1)

Tables Icon

Table 1 Mechanical Properties of POF Used in the Finite Element Simulation

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ n i j = { ( c 1 c 2 ) σ i i + c 2 k = 1 3 σ k k i = j c 3 σ i j i j ,
Δ n i j 2 = h ( c i , σ i j ϵ i j ) = h ( c i , u ) .
u ¯ p = V u p d V V ,
P o u t P i n = η = 10 [ 0.714 exp ( 0.165 R ) ] ( 7.87 × 10 4 u ¯ p 2 1.72 × 10 2 u ¯ p + 1 ) ,

Metrics