Abstract

We report on the observation of cross-phase modulation instability in a highly nonlinear photonic crystal fiber. In such fibers the presence of higher orders of dispersion results in a complex phase-matching curve. We are able to observe this behavior experimentally and obtain excellent agreement between the measured and predicted shifts.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Stolen, M. A. Bösch, and C. Lin, Opt. Lett. 6, 213 (1981).
    [CrossRef] [PubMed]
  2. S. Wabnitz, Phys. Rev. A 38, 2018 (1988).
    [CrossRef] [PubMed]
  3. S. G. Murdoch, R. Leonhardt, and J. D. Harvey, Opt. Lett. 20, 866 (1995).
    [CrossRef] [PubMed]
  4. P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, Opt. Commun. 78, 137 (1990).
    [CrossRef]
  5. J. Rothenberg, Phys. Rev. A 42, 682 (1990).
    [CrossRef] [PubMed]
  6. D. Amans, E. Brainis, M. Haelterman, and Ph. Emplit, Opt. Lett. 30, 1051 (2005).
    [CrossRef] [PubMed]
  7. G. Millot, A. Sauter, J. M. Dudley, L. Provino, and R. S. Windeler, Opt. Lett. 27, 695 (2002).
    [CrossRef]
  8. C. De Angelis, M. Santagiustina, and S. Trillo, Phys. Rev. A 51, 774 (1995).
    [CrossRef] [PubMed]
  9. G. K. L. Wong, A. Y. H. Chen, S. W. Ha, R. J. Kruhlak, S. G. Murdoch, R. Leonhardt, J. D. Harvey, and N. Y. Joly, Opt. Express 13, 8662 (2005).
    [CrossRef] [PubMed]
  10. S. C. Rashleigh and R. Ulrich, Opt. Lett. 3, 60 (1978).
    [CrossRef] [PubMed]
  11. A. Y. H. Chen, G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Opt. Lett. 30, 762 (2005).
    [CrossRef] [PubMed]
  12. M. E. Marhic, K. K. Wong, and L. G. Kazovsky, IEEE J. Sel. Top. Quantum Electron. 10, 1133 (2004).
    [CrossRef]
  13. G. K. L. Wong, A. Y. H. Chen, S. G. Murdoch, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, J. Opt. Soc. Am. B 22, 2505 (2005).
    [CrossRef]

2005 (4)

2004 (1)

M. E. Marhic, K. K. Wong, and L. G. Kazovsky, IEEE J. Sel. Top. Quantum Electron. 10, 1133 (2004).
[CrossRef]

2002 (1)

1995 (2)

C. De Angelis, M. Santagiustina, and S. Trillo, Phys. Rev. A 51, 774 (1995).
[CrossRef] [PubMed]

S. G. Murdoch, R. Leonhardt, and J. D. Harvey, Opt. Lett. 20, 866 (1995).
[CrossRef] [PubMed]

1990 (2)

P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, Opt. Commun. 78, 137 (1990).
[CrossRef]

J. Rothenberg, Phys. Rev. A 42, 682 (1990).
[CrossRef] [PubMed]

1988 (1)

S. Wabnitz, Phys. Rev. A 38, 2018 (1988).
[CrossRef] [PubMed]

1981 (1)

1978 (1)

Amans, D.

Bösch, M. A.

Brainis, E.

Chen, A. Y. H.

De Angelis, C.

C. De Angelis, M. Santagiustina, and S. Trillo, Phys. Rev. A 51, 774 (1995).
[CrossRef] [PubMed]

Drummond, P. D.

P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, Opt. Commun. 78, 137 (1990).
[CrossRef]

Dudley, J. M.

G. Millot, A. Sauter, J. M. Dudley, L. Provino, and R. S. Windeler, Opt. Lett. 27, 695 (2002).
[CrossRef]

P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, Opt. Commun. 78, 137 (1990).
[CrossRef]

Emplit, Ph.

Ha, S. W.

Haelterman, M.

Harvey, J. D.

Joly, N. Y.

Kazovsky, L. G.

M. E. Marhic, K. K. Wong, and L. G. Kazovsky, IEEE J. Sel. Top. Quantum Electron. 10, 1133 (2004).
[CrossRef]

Kennedy, T. A. B.

P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, Opt. Commun. 78, 137 (1990).
[CrossRef]

Knight, J. C.

Kruhlak, R. J.

Leonhardt, R.

Lin, C.

Marhic, M. E.

M. E. Marhic, K. K. Wong, and L. G. Kazovsky, IEEE J. Sel. Top. Quantum Electron. 10, 1133 (2004).
[CrossRef]

Millot, G.

Murdoch, S. G.

Provino, L.

Rashleigh, S. C.

Rothenberg, J.

J. Rothenberg, Phys. Rev. A 42, 682 (1990).
[CrossRef] [PubMed]

Russell, P. St. J.

Santagiustina, M.

C. De Angelis, M. Santagiustina, and S. Trillo, Phys. Rev. A 51, 774 (1995).
[CrossRef] [PubMed]

Sauter, A.

Stolen, R. H.

Trillo, S.

C. De Angelis, M. Santagiustina, and S. Trillo, Phys. Rev. A 51, 774 (1995).
[CrossRef] [PubMed]

Ulrich, R.

Wabnitz, S.

S. Wabnitz, Phys. Rev. A 38, 2018 (1988).
[CrossRef] [PubMed]

Wadsworth, W. J.

Windeler, R. S.

Wong, G. K. L.

Wong, K. K.

M. E. Marhic, K. K. Wong, and L. G. Kazovsky, IEEE J. Sel. Top. Quantum Electron. 10, 1133 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. E. Marhic, K. K. Wong, and L. G. Kazovsky, IEEE J. Sel. Top. Quantum Electron. 10, 1133 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, Opt. Commun. 78, 137 (1990).
[CrossRef]

Opt. Express (1)

Opt. Lett. (6)

Phys. Rev. A (3)

S. Wabnitz, Phys. Rev. A 38, 2018 (1988).
[CrossRef] [PubMed]

J. Rothenberg, Phys. Rev. A 42, 682 (1990).
[CrossRef] [PubMed]

C. De Angelis, M. Santagiustina, and S. Trillo, Phys. Rev. A 51, 774 (1995).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

XPMI phase-matching curve as a function of pump wavelength. The pump power is set to 3 W , polarized at 45° to the birefringent axes. Inset; mean dispersion of the PCF over the wavelength range of interest.

Fig. 2
Fig. 2

Spectrum of light exiting the fiber on the high-group index axis and low-group index axis. The pump wavelength was 640 nm , and the input pump power was 3 W , polarized at 45° to the birefringent axes.

Fig. 3
Fig. 3

Spontaneous XPMI sideband frequency shift as a function of pump wavelength. The input pump power was 3 W , polarized at 45° to the birefringent axes. The crosses show the experimentally measured points. The solid curve is the prediction of Eq. (3).

Fig. 4
Fig. 4

Spontaneous and seeded XPMI sideband frequency shifts as a function of pump wavelength. The input pump power was 3 W , polarized at 45° to the birefringent axes. The crosses show the experimentally measured spontaneous shifts. The diamonds show the experimentally measured seeded shifts with the Stokes seed polarized parallel to the high group-index mode. The circles show the experimentally measured seeded shifts with the Stokes seed polarized parallel to the low group-index mode. The solid curve is the prediction of Eq. (3).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

{ [ 2 k Δ δ β ( Ω ) ] 2 Δ β L x ( Ω ) [ Δ β L x ( Ω ) + 4 γ P x ] } { [ 2 k + Δ δ β ( Ω ) ] 2 Δ β L y ( Ω ) [ Δ β L y ( Ω ) + 4 γ P y ] } = ( 64 9 ) γ 2 P x P y Δ β L x ( Ω ) Δ β L y ( Ω ) ,
Δ β L x , y ( Ω ) = β x , y ( ω p + Ω ) + β x , y ( ω p Ω ) 2 β x , y ( ω p ) .
Δ β L ¯ ( Ω ) + Δ δ β ( Ω ) + γ ( P x + P y ) = 0 ,

Metrics