Abstract

We demonstrate the generation of hollow laser beams by using a binary spatial light modulator and compare the results with those for a continuous modulator. The binary phase modulator produces beams that have continuous, azimuthally varying phase profiles and can be dynamically changed with kilohertz refresh rates. The intensity and phase profiles are recorded through the focus of an imaging lens and are compared with scalar diffraction theory. We highlight properties of the beams relevant to optical dipole traps.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
    [CrossRef]
  2. H. R. Noh and W. Jhe, Phys. Rep. 372, 269 (2002).
    [CrossRef]
  3. Y. Song, D. Milam, and W. T. Hill III, Opt. Lett. 24, 1805 (1999).
    [CrossRef]
  4. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
    [CrossRef] [PubMed]
  5. Ya. Izdebskaya, V. Shvedov, and A. Volyar, Opt. Lett. 30, 2530 (2005).
    [CrossRef] [PubMed]
  6. A. Kaplan, N. Friedman, and N. Davidson, J. Opt. Soc. Am. B 19, 1233 (2002).
    [CrossRef]
  7. J. Arlt, T. Hitomi, and K. Dholakia, Appl. Phys. B 71, 549 (2000).
    [CrossRef]
  8. N. Chattrapiban, E. A. Rogers, D. Cofield, W. T. Hill III, and R. Roy, Opt. Lett. 28, 2183 (2003).
    [CrossRef] [PubMed]
  9. D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, Opt. Express 11, 158 (2003).
    [CrossRef] [PubMed]
  10. J. Durnin, J. Opt. Soc. Am. A 4, 651 (1987).
    [CrossRef]
  11. A. Vasara, J. Turunen, and A. T. Friberg, J. Opt. Soc. Am. A 6, 1748 (1989).
    [CrossRef] [PubMed]
  12. W. J. Hossack, E. Theofanidou, J. Crain, K. Heggarty, and M. Birch, Opt. Express 11, 2053 (2003).
    [CrossRef] [PubMed]
  13. S. Bergamini, B. Darquie, M. Jones, L. Jacubowiez, A. Browaeys, and P. Grangier, J. Opt. Soc. Am. B 21, 1889 (2004).
    [CrossRef]
  14. V. Boyer, C. M. Chandrashekar, C. J. Foot, and Z. J. Laczik, J. Mod. Opt. 51, 2235 (2004).
    [CrossRef]

2005 (1)

2004 (3)

K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[CrossRef]

S. Bergamini, B. Darquie, M. Jones, L. Jacubowiez, A. Browaeys, and P. Grangier, J. Opt. Soc. Am. B 21, 1889 (2004).
[CrossRef]

V. Boyer, C. M. Chandrashekar, C. J. Foot, and Z. J. Laczik, J. Mod. Opt. 51, 2235 (2004).
[CrossRef]

2003 (3)

2002 (2)

2000 (1)

J. Arlt, T. Hitomi, and K. Dholakia, Appl. Phys. B 71, 549 (2000).
[CrossRef]

1999 (1)

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
[CrossRef] [PubMed]

1989 (1)

1987 (1)

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
[CrossRef] [PubMed]

Arlt, J.

J. Arlt, T. Hitomi, and K. Dholakia, Appl. Phys. B 71, 549 (2000).
[CrossRef]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
[CrossRef] [PubMed]

Bergamini, S.

Birch, M.

Block, S. M.

K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[CrossRef]

Boyer, V.

V. Boyer, C. M. Chandrashekar, C. J. Foot, and Z. J. Laczik, J. Mod. Opt. 51, 2235 (2004).
[CrossRef]

Browaeys, A.

Chandrashekar, C. M.

V. Boyer, C. M. Chandrashekar, C. J. Foot, and Z. J. Laczik, J. Mod. Opt. 51, 2235 (2004).
[CrossRef]

Chattrapiban, N.

Cofield, D.

Crain, J.

Darquie, B.

Davidson, N.

Dholakia, K.

Durnin, J.

Foot, C. J.

V. Boyer, C. M. Chandrashekar, C. J. Foot, and Z. J. Laczik, J. Mod. Opt. 51, 2235 (2004).
[CrossRef]

Friberg, A. T.

Friedman, N.

Grangier, P.

Heggarty, K.

Hill, W. T.

Hitomi, T.

J. Arlt, T. Hitomi, and K. Dholakia, Appl. Phys. B 71, 549 (2000).
[CrossRef]

Hossack, W. J.

Izdebskaya, Ya.

Jacubowiez, L.

Jhe, W.

H. R. Noh and W. Jhe, Phys. Rep. 372, 269 (2002).
[CrossRef]

Jones, M.

Kaplan, A.

Laczik, Z. J.

V. Boyer, C. M. Chandrashekar, C. J. Foot, and Z. J. Laczik, J. Mod. Opt. 51, 2235 (2004).
[CrossRef]

McGloin, D.

Melville, H.

Milam, D.

Neuman, K. C.

K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[CrossRef]

Noh, H. R.

H. R. Noh and W. Jhe, Phys. Rep. 372, 269 (2002).
[CrossRef]

Rogers, E. A.

Roy, R.

Shvedov, V.

Sibbett, W.

Song, Y.

Spalding, G. C.

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
[CrossRef] [PubMed]

Theofanidou, E.

Turunen, J.

Vasara, A.

Volyar, A.

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Setup for the reflection-mode binary SLM; s-polarized light is directed to the SLM by a polarizing beam splitter (PBS). Reflected p-polarized light is imaged through a lens with focal length f. The intensity profiles are recorded by a CCD camera.

Fig. 2
Fig. 2

(Color online) (a) Phase pattern applied to the SLM for n = 2 . (b) Imaged intensity pattern in the focal plane using binary modulation and (c) continuous modulation. (d) Intensity profiles using binary (dashed) and continuous (solid) modulation.

Fig. 3
Fig. 3

(Color online) Experimental interferograms of the diffracted beams with a plane wave using (a) binary phase modulation and (b) continuous modulation.

Fig. 4
Fig. 4

(Color online) (a) Intensity profile for the n = 5 azimuthal binary phase pattern with B = 0 . (b) Interferogram showing a binary phase profile near focal plane. (c) Multiplexing two binary phase patterns that are rotated with respect to one another results in a uniform HLB.

Fig. 5
Fig. 5

(Color online) (a) Theoretical intensity profile of n = 16 beam in the focal plane of a 300 mm lens. Theoretical (b) and experimental (c) intensity profiles of the same beam at 4.5 cm from the focal plane. The image diameter is 2.4 mm . (d) Peak intensity of n = 5 (squares) and n = 10 (circles) as a function of propagation distance from the focal plane. Dashed curves, theory.

Metrics