Abstract

We propose and demonstrate a novel implementation of spectral-shearing interferometry (SSI) for reconstructing the electric field of ultrashort pulses by utilizing asymmetric group velocity matching in a long nonlinear crystal. The proposed configuration eliminates the requirement for a linearly chirped auxiliary pulse that is in common in all existing SSI methods, relying on nonlinear conversion to produce a spectral shear.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Wong and I. A. Walmsley, J. Opt. Soc. Am. B 12, 1491 (1995).
    [CrossRef]
  2. C. Radzewicz, P. Wasylczyk, and J. S. Krasinski, Opt. Commun. 186, 329 (2000).
    [CrossRef]
  3. P. O'Shea, M. Kimmel, X. Gu, and R. Trebino, Opt. Lett. 26, 932 (2001).
    [CrossRef]
  4. D. T. Reid and I. G. Cormack, Opt. Lett. 27, 658 (2002).
    [CrossRef]
  5. C. Iaconis and I. A. Walmsley, Opt. Lett. 23, 792 (1998).
    [CrossRef]
  6. C. Iaconis and I. A. Walmsley, IEEE J. Quantum Electron. 35, 501 (1999).
    [CrossRef]
  7. W. P. Grice, A. B. U'Ren, and I. A. Walmsley, Phys. Rev. A 64, 063815 (2001).
    [CrossRef]
  8. A. M. Weiner, IEEE J. Quantum Electron. 19, 1276 (1983).
    [CrossRef]
  9. A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw, IEEE J. Quantum Electron. 29, 580 (1993).
    [CrossRef]

2002 (1)

2001 (2)

P. O'Shea, M. Kimmel, X. Gu, and R. Trebino, Opt. Lett. 26, 932 (2001).
[CrossRef]

W. P. Grice, A. B. U'Ren, and I. A. Walmsley, Phys. Rev. A 64, 063815 (2001).
[CrossRef]

2000 (1)

C. Radzewicz, P. Wasylczyk, and J. S. Krasinski, Opt. Commun. 186, 329 (2000).
[CrossRef]

1999 (1)

C. Iaconis and I. A. Walmsley, IEEE J. Quantum Electron. 35, 501 (1999).
[CrossRef]

1998 (1)

1995 (1)

1993 (1)

A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw, IEEE J. Quantum Electron. 29, 580 (1993).
[CrossRef]

1983 (1)

A. M. Weiner, IEEE J. Quantum Electron. 19, 1276 (1983).
[CrossRef]

Baronavski, A. P.

A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw, IEEE J. Quantum Electron. 29, 580 (1993).
[CrossRef]

Cormack, I. G.

Grice, W. P.

W. P. Grice, A. B. U'Ren, and I. A. Walmsley, Phys. Rev. A 64, 063815 (2001).
[CrossRef]

Gu, X.

Iaconis, C.

C. Iaconis and I. A. Walmsley, IEEE J. Quantum Electron. 35, 501 (1999).
[CrossRef]

C. Iaconis and I. A. Walmsley, Opt. Lett. 23, 792 (1998).
[CrossRef]

Kimmel, M.

Krasinski, J. S.

C. Radzewicz, P. Wasylczyk, and J. S. Krasinski, Opt. Commun. 186, 329 (2000).
[CrossRef]

Ladouceur, H. D.

A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw, IEEE J. Quantum Electron. 29, 580 (1993).
[CrossRef]

O'Shea, P.

Radzewicz, C.

C. Radzewicz, P. Wasylczyk, and J. S. Krasinski, Opt. Commun. 186, 329 (2000).
[CrossRef]

Reid, D. T.

Shaw, J. K.

A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw, IEEE J. Quantum Electron. 29, 580 (1993).
[CrossRef]

Trebino, R.

U'Ren, A. B.

W. P. Grice, A. B. U'Ren, and I. A. Walmsley, Phys. Rev. A 64, 063815 (2001).
[CrossRef]

Walmsley, I. A.

W. P. Grice, A. B. U'Ren, and I. A. Walmsley, Phys. Rev. A 64, 063815 (2001).
[CrossRef]

C. Iaconis and I. A. Walmsley, IEEE J. Quantum Electron. 35, 501 (1999).
[CrossRef]

C. Iaconis and I. A. Walmsley, Opt. Lett. 23, 792 (1998).
[CrossRef]

V. Wong and I. A. Walmsley, J. Opt. Soc. Am. B 12, 1491 (1995).
[CrossRef]

Wasylczyk, P.

C. Radzewicz, P. Wasylczyk, and J. S. Krasinski, Opt. Commun. 186, 329 (2000).
[CrossRef]

Weiner, A. M.

A. M. Weiner, IEEE J. Quantum Electron. 19, 1276 (1983).
[CrossRef]

Wong, V.

IEEE J. Quantum Electron. (3)

C. Iaconis and I. A. Walmsley, IEEE J. Quantum Electron. 35, 501 (1999).
[CrossRef]

A. M. Weiner, IEEE J. Quantum Electron. 19, 1276 (1983).
[CrossRef]

A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw, IEEE J. Quantum Electron. 29, 580 (1993).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

C. Radzewicz, P. Wasylczyk, and J. S. Krasinski, Opt. Commun. 186, 329 (2000).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (1)

W. P. Grice, A. B. U'Ren, and I. A. Walmsley, Phys. Rev. A 64, 063815 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(Color online) Absolute magnitudes of the collinear, type II PMF, sinc 2 ( Δ k L 2 ) , Δ k ( ω e , ω 0 ) = k e ( ω e + ω 0 ) k e ( ω e ) k 0 ( ω 0 ) of a L = 2 cm thick KDP crystal for two (different by 0.5°) values of the propagation angle, plotted as a function of frequency for ordinary ω 0 and extraordinary ω e input polarization components (black indicating perfect phase matching). The sum-frequency signals are drawn on the diagonal axis, ω s = ω e + ω 0 , illustrating the shear between the outputs.

Fig. 2
Fig. 2

(Color online) Experimental arrangement (top view) for LX-SPIDER. WP, half-wave plate; BS, beam splitter; M, mirror; MP, mirror pair; LX, crystal.

Fig. 3
Fig. 3

(Color online) Spectral amplitude (curve with squares) of the test pulse and its sinusoidally modulated spectral phase reconstructed by conventional (solid curve) and long-crystal (dashed curve) SPIDERs.

Fig. 4
Fig. 4

(Color online) Spectral amplitude (curve with squares) and phase (dots) measured by LX-SPIDER and the theoretical spectral phase (solid curve) after propagation through 10 cm of BK7 glass.

Metrics