Abstract

We demonstrate production of continuous coherent blue laser light by using a five-level system in rubidium vapor. Two low-power lasers, at 780 and 776nm, induce strong atomic coherence in the 5S5P5D states. The atoms decay to the 6P excited state, from which stimulated emission produces a coherent blue (420nm) beam. We have coupled both ground-state hyperfine levels, effecting coherence between four levels. The coherent blue output is enhanced by several mechanisms, including stronger coupling to a larger fraction of the atomic population, operation at a detuning such that the vapor is nominally transparent to the 780nm pump field, reduced losses owing to optical pumping, and optimal phase matching. We report experimental findings and compare them with results from a semiclassical Maxwell–Bloch model.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription