Abstract

We demonstrate a coherent lidar that uses a broadband femtosecond fiber laser as a source and resolves the returning heterodyne signal into N spectral channels by using an arrayed-waveguide grating. The data are processed incoherently to yield an N-times improvement in the Doppler measurement of a surface vibration. For N=6, we achieve a sensitivity of 153 Hz, corresponding to a 0.12mms motion, in 10 ms despite a signal that is speckle broadened to 14 kHz. Alternatively, the data are processed coherently to form a range image. For a flat target, we achieve a 60μm range resolution, limited mainly by the source bandwidth, despite the dispersion of 1 km of optical fiber in the signal path.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Diddams, D. J. Jones, S. T. C. J. Ye, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, Phys. Rev. Lett. 84, 5102 (2000).
    [CrossRef] [PubMed]
  2. R. M. Huffaker and R. M. Hardesty, Proc. IEEE 84, 181 (1996).
    [CrossRef]
  3. B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, Opt. Lett. 29, 250 (2004).
    [CrossRef] [PubMed]
  4. T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, and M. N. Fermann, Opt. Lett. 29, 2467 (2004).
    [CrossRef] [PubMed]
  5. A. Bartels, C. W. Oates, L. Hollberg, and S. A. Diddams, Opt. Lett. 29, 1081 (2004).
    [CrossRef] [PubMed]
  6. K. Minoshima and H. Matsumoto, Appl. Opt. 39, 5512 (2000).
    [CrossRef]
  7. J. Ye, Opt. Lett. 29, 1153 (2004).
    [CrossRef] [PubMed]
  8. G. N. Pearson, J. Roberts, J. R. Eacock, and M. Harris, Appl. Opt. 41, 6442 (2002).
    [CrossRef] [PubMed]
  9. C. J. Karlsson, F. A. A. Olsson, D. Letalick, and M. Harris, Appl. Opt. 39, 3716 (2000).
    [CrossRef]
  10. D. Letalick, I. Renhorn, O. Steinvall, and J. H. Shapiro, Appl. Opt. 28, 2657 (1989).
    [CrossRef] [PubMed]
  11. V. Philippov, C. Codemard, Y. Jeong, C. Alegria, J. Sahu, J. Nilsson, and G. N. Pearson, Opt. Lett. 29, 2590 (2004).
    [CrossRef] [PubMed]
  12. P. Drobinski, P. H. Flamant, P. Salamitou, Appl. Opt. 39, 376 (2000).
    [CrossRef]
  13. K. D. Ridley, G. N. Pearson, and M. Harris, Appl. Opt. 40, 2017 (2001).
    [CrossRef]
  14. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, Opt. Express 12, 2404-2422 (2004).
    [CrossRef] [PubMed]
  15. B. R. Washburn, R. Fox, N. R. Newbury, J. W. Nicholson, K. Feder, P. S. Westbrook, and C. G. Jørgensen, Opt. Express 12, 4999 (2004).
    [CrossRef] [PubMed]
  16. B. J. Rye, and R. M. Hardesty, IEEE Trans. Geosci. Remote Sens. 31, 16 (1993).
    [CrossRef]

2004 (7)

2002 (1)

2001 (1)

2000 (4)

1996 (1)

R. M. Huffaker and R. M. Hardesty, Proc. IEEE 84, 181 (1996).
[CrossRef]

1993 (1)

B. J. Rye, and R. M. Hardesty, IEEE Trans. Geosci. Remote Sens. 31, 16 (1993).
[CrossRef]

1989 (1)

Alegria, C.

Bartels, A.

Codemard, C.

Diddams, S. A.

Drobinski, P.

Duker, J. S.

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, Opt. Express 12, 2404-2422 (2004).
[CrossRef] [PubMed]

Eacock, J. R.

Feder, K.

Fermann, M. N.

Flamant, P. H.

Fox, R.

Fujimoto, J. G.

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, Opt. Express 12, 2404-2422 (2004).
[CrossRef] [PubMed]

Hall, J. L.

S. A. Diddams, D. J. Jones, S. T. C. J. Ye, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, Phys. Rev. Lett. 84, 5102 (2000).
[CrossRef] [PubMed]

Hänsch, T. W.

S. A. Diddams, D. J. Jones, S. T. C. J. Ye, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, Phys. Rev. Lett. 84, 5102 (2000).
[CrossRef] [PubMed]

Hardesty, R. M.

R. M. Huffaker and R. M. Hardesty, Proc. IEEE 84, 181 (1996).
[CrossRef]

B. J. Rye, and R. M. Hardesty, IEEE Trans. Geosci. Remote Sens. 31, 16 (1993).
[CrossRef]

Harris, M.

Hartl, I.

Hollberg, L.

Holzwarth, R.

S. A. Diddams, D. J. Jones, S. T. C. J. Ye, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, Phys. Rev. Lett. 84, 5102 (2000).
[CrossRef] [PubMed]

Hong, F.-L.

Huffaker, R. M.

R. M. Huffaker and R. M. Hardesty, Proc. IEEE 84, 181 (1996).
[CrossRef]

Inaba, H.

Jeong, Y.

Jones, D. J.

S. A. Diddams, D. J. Jones, S. T. C. J. Ye, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, Phys. Rev. Lett. 84, 5102 (2000).
[CrossRef] [PubMed]

Jørgensen, C. G.

Karlsson, C. J.

Ko, T. H.

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, Opt. Express 12, 2404-2422 (2004).
[CrossRef] [PubMed]

Kowalczyk, A.

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, Opt. Express 12, 2404-2422 (2004).
[CrossRef] [PubMed]

Letalick, D.

Matsumoto, H.

Minoshima, K.

Newbury, N. R.

Nicholson, J. W.

Nilsson, J.

Oates, C. W.

Olsson, F. A.

Onae, A.

Pearson, G. N.

Philippov, V.

Ranka, J. K.

S. A. Diddams, D. J. Jones, S. T. C. J. Ye, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, Phys. Rev. Lett. 84, 5102 (2000).
[CrossRef] [PubMed]

Renhorn, I.

Ridley, K. D.

Roberts, J.

Rye, B. J.

B. J. Rye, and R. M. Hardesty, IEEE Trans. Geosci. Remote Sens. 31, 16 (1993).
[CrossRef]

Sahu, J.

Salamitou, P.

Schibli, T. R.

Shapiro, J. H.

Srinivasan, V. J.

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, Opt. Express 12, 2404-2422 (2004).
[CrossRef] [PubMed]

Steinvall, O.

Udem, T.

S. A. Diddams, D. J. Jones, S. T. C. J. Ye, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, Phys. Rev. Lett. 84, 5102 (2000).
[CrossRef] [PubMed]

Washburn, B. R.

Westbrook, P. S.

Windeler, R. S.

S. A. Diddams, D. J. Jones, S. T. C. J. Ye, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, Phys. Rev. Lett. 84, 5102 (2000).
[CrossRef] [PubMed]

Wojtkowski, M.

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, Opt. Express 12, 2404-2422 (2004).
[CrossRef] [PubMed]

Yan, M. F.

Ye, J.

Ye, S. T.

S. A. Diddams, D. J. Jones, S. T. C. J. Ye, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, Phys. Rev. Lett. 84, 5102 (2000).
[CrossRef] [PubMed]

Appl. Opt. (6)

IEEE Trans. Geosci. Remote Sens. (1)

B. J. Rye, and R. M. Hardesty, IEEE Trans. Geosci. Remote Sens. 31, 16 (1993).
[CrossRef]

Opt. Express (2)

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, Opt. Express 12, 2404-2422 (2004).
[CrossRef] [PubMed]

B. R. Washburn, R. Fox, N. R. Newbury, J. W. Nicholson, K. Feder, P. S. Westbrook, and C. G. Jørgensen, Opt. Express 12, 4999 (2004).
[CrossRef] [PubMed]

Opt. Lett. (5)

Phys. Rev. Lett. (1)

S. A. Diddams, D. J. Jones, S. T. C. J. Ye, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, Phys. Rev. Lett. 84, 5102 (2000).
[CrossRef] [PubMed]

Proc. IEEE (1)

R. M. Huffaker and R. M. Hardesty, Proc. IEEE 84, 181 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

System layout. Solid curves are fiber paths, dotted lines are air paths. The variable delay line precisely adjusts the relative delay between the two arms and permits scanning the conventional lidar’s range. AOM, acousto-optic modulator; EDFA, erbium-doped fiber amplifier; SMF, 800 m of single-mode fiber. Inset, output spectrum of the amplified source (dashed curve) and the individual spectra of the filtered FReCL channels (solid curves).

Fig. 2
Fig. 2

(Color online) Relative range image of the wobbling, rotating disk for one full rotation (0.12 s) for balanced signal and LO arms with a 10 ms averaging time. The range image from the conventional channel shown in (a) is acquired by accumulating the response over 17 disk revolutions. (In one disk revolution, only one horizontal stripe of data is obtained.) (b) Alternatively, in one disk revolution the FReCL data yield the entire range image. Identical FReCL images can be obtained at other delays. T A is the total acquisition time.

Fig. 3
Fig. 3

(Color online) Range image of the same disk as Fig. 1, with 1 km of fiber in the signal path for (a) conventional data at 27 delay steps of 0.5 ps each and for (b) FReCL data at a fixed LO delay after phase compensation. Note the 10 × larger range scale in (a) versus (b).

Fig. 4
Fig. 4

(a) Example power spectrum: conventional (dashed curve) and FReCL data (solid curve) for t gate = 10 ms . (b) Variance versus 1 t gate for the conventional (dashed line) and FReCL data (solid line). (c) Example vibration measurement. The mean of the FReCL channel measurements (filled squares) are in good agreement with the applied vibration (solid line) after adding 100 Hz shift from a small average longitudinal target velocity. For a single measurement (one target rotation), the standard deviation for the summed FReCL data is 280 Hz (light gray region) and for the single conventional channel is 700 Hz (dark gray region) for t gate = 3 ms .

Metrics