Abstract

Conventional image reconstruction methods for optoacoustic tomography (OAT) assume an idealized, nondispersive acoustic medium. However, the linear attenuation coefficient and the phase velocity of acoustic waves propagating in soft tissue depend on temporal frequency and satisfy a known dispersion law. These frequency-dependent effects are incorporated into an optoacoustic wave equation, and a corresponding reconstruction method for OAT is developed. The improvement in image fidelity that can be achieved over conventional reconstruction methods is demonstrated by use of computer-simulation studies.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Xu and L. V. Wang, IEEE Trans. Med. Imaging 21, 814 (2002).
    [CrossRef] [PubMed]
  2. Y. Xu and L. V. Wang, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1134 (2003).
    [CrossRef] [PubMed]
  3. N. V. Sushilov and R. S. C. Cobbold, J. Acoust. Soc. Am. 115, 1431 (2004).
    [CrossRef] [PubMed]
  4. D. Finch, S. Patch, and S. Rakesh, SIAM (Soc. Ind. Appl. Math) J. Appl. Math. 35, 1213 (2004).

2004

N. V. Sushilov and R. S. C. Cobbold, J. Acoust. Soc. Am. 115, 1431 (2004).
[CrossRef] [PubMed]

D. Finch, S. Patch, and S. Rakesh, SIAM (Soc. Ind. Appl. Math) J. Appl. Math. 35, 1213 (2004).

2003

Y. Xu and L. V. Wang, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1134 (2003).
[CrossRef] [PubMed]

2002

M. Xu and L. V. Wang, IEEE Trans. Med. Imaging 21, 814 (2002).
[CrossRef] [PubMed]

Cobbold, R. S. C.

N. V. Sushilov and R. S. C. Cobbold, J. Acoust. Soc. Am. 115, 1431 (2004).
[CrossRef] [PubMed]

Finch, D.

D. Finch, S. Patch, and S. Rakesh, SIAM (Soc. Ind. Appl. Math) J. Appl. Math. 35, 1213 (2004).

Patch, S.

D. Finch, S. Patch, and S. Rakesh, SIAM (Soc. Ind. Appl. Math) J. Appl. Math. 35, 1213 (2004).

Rakesh, S.

D. Finch, S. Patch, and S. Rakesh, SIAM (Soc. Ind. Appl. Math) J. Appl. Math. 35, 1213 (2004).

Sushilov, N. V.

N. V. Sushilov and R. S. C. Cobbold, J. Acoust. Soc. Am. 115, 1431 (2004).
[CrossRef] [PubMed]

Wang, L. V.

Y. Xu and L. V. Wang, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1134 (2003).
[CrossRef] [PubMed]

M. Xu and L. V. Wang, IEEE Trans. Med. Imaging 21, 814 (2002).
[CrossRef] [PubMed]

Xu, M.

M. Xu and L. V. Wang, IEEE Trans. Med. Imaging 21, 814 (2002).
[CrossRef] [PubMed]

Xu, Y.

Y. Xu and L. V. Wang, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1134 (2003).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging

M. Xu and L. V. Wang, IEEE Trans. Med. Imaging 21, 814 (2002).
[CrossRef] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control

Y. Xu and L. V. Wang, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1134 (2003).
[CrossRef] [PubMed]

J. Acoust. Soc. Am.

N. V. Sushilov and R. S. C. Cobbold, J. Acoust. Soc. Am. 115, 1431 (2004).
[CrossRef] [PubMed]

SIAM (Soc. Ind. Appl. Math) J. Appl. Math.

D. Finch, S. Patch, and S. Rakesh, SIAM (Soc. Ind. Appl. Math) J. Appl. Math. 35, 1213 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Images of a transverse slice z = 0.25 cm reconstructed from noiseless (top row) and noisy (bottom row) optoacoustic signals without and with compensation of dispersion effects are shown in the left and right columns, respectively.

Fig. 2
Fig. 2

Profiles corresponding to the line x = 0 in the slice z = 0.25 cm of reconstructed A ( r ) . The profiles corresponding to images reconstructed from the uncorrected and corrected data are denoted by circles and dashed curves, respectively. The solid curves represent the true profiles. The top and bottom plots correspond to the noiseless and noisy cases, respectively.

Fig. 3
Fig. 3

Effective blurring kernel width versus bandwidth (FWHM of transducer response function) for reconstructions contaminated with frequency-dependent dispersion and after application of proposed correction.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

α ( ω ) = α 0 ω n ,
2 p ( r , t ) 1 c 0 2 2 t 2 p ( r , t ) = β C p t H ( r , t ) ,
2 ϕ ( r , t ) 1 c 0 2 2 t 2 ϕ ( r , t ) + L ( t ) ϕ ( r , t ) = δ ( r r s ) s ( t ) ,
L ( t ) = 1 2 π [ K ( ω ) 2 ω 2 c 0 2 ] exp ( i ω t ) d ω ,
K ( ω ) = ω c ( ω ) + i α ( ω ) .
2 p ( r , t ) 1 c 0 2 2 t 2 p ( r , t ) + L ( t ) p ( r , t ) = β C p t H ( r , t ) .
1 c ( ω ) = 1 c 0 2 π α 0 ln ω ω 0 ,
H ( r , t ) = A ( r ) I ( t ) ,
p ̃ ( r , ω ) = p ( r , t ) exp ( i ω t ) d t ,
p ( r , t ) = 1 2 π p ̃ ( r , ω ) exp ( i ω t ) d ω
[ 2 + K ( ω ) 2 ] p ̃ ( r , ω ) = i ω β C p A ( r ) I ( ω ) .
p ̃ ( r , ω ) = i ω β C p I ( ω ) d r A ( r ) G ( r r ) ,
G ( r r ) = exp [ i K ( ω ) r r ] 4 π r r .
p ̃ ( r , ω ) = I ( ω ) [ c 0 c ( ω ) + i c 0 α 0 sgn ( ω ) ] 1 × p ideal ( r , t ) exp { i [ ω c 0 c ( ω ) + i c 0 α 0 ω ] t } d t ,
p ideal ( r , t ) = β C p d r A ( r ) δ ( t r r c 0 ) 4 π r r

Metrics