Abstract

Refractive-index changes accompanying changes in population of electronic levels of Yb3+ ions in a Yb:YAG laser disk under intense diode and laser pumping have been studied by use of both a highly sensitive polarization interferometer and transient grating testing at 633nm. The electronic change of the index that is due to excitation of the Yb3+ ions (which have different polarizability of ground state F722 and excited level F522) is strongly predominant over the thermal component. The polarizability differences are Δp(1.9±0.8)×1026 and (1.95±0.25)×1026cm3 as measured at 633nm in interferometric and transient grating experiments, respectively.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Powel, Physics of Solid-State Laser Materials (Springer-Verlag, 1998).
    [CrossRef]
  2. O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob'ev, D. V. Bredikhin, and M. S. Kuznetsov, IEEE J. Quantum Electron. 39, 910 (2003).
    [CrossRef]
  3. W. F. Krupke, IEEE J. Sel. Top. Quantum Electron. 6, 1287 (2000).
    [CrossRef]
  4. H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, IEEE J. Sel. Top. Quantum Electron. 3, 105 (1997).
    [CrossRef]
  5. C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, IEEE J. Sel. Top. Quantum Electron. 6, 650 (2000).
    [CrossRef]
  6. E. Bochove, Opt. Commun. 29, 2414 (2004).
  7. H. J. Eichler, P. Gunter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, 1986).
  8. J. Dong, P. Deng, Y. Liu, Y. Zhang, J. Xu, W. Chen, and X. Xie, Appl. Opt. 40, 4303 (2001).
    [CrossRef]

2004

E. Bochove, Opt. Commun. 29, 2414 (2004).

2003

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob'ev, D. V. Bredikhin, and M. S. Kuznetsov, IEEE J. Quantum Electron. 39, 910 (2003).
[CrossRef]

2001

2000

W. F. Krupke, IEEE J. Sel. Top. Quantum Electron. 6, 1287 (2000).
[CrossRef]

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, IEEE J. Sel. Top. Quantum Electron. 6, 650 (2000).
[CrossRef]

1997

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, IEEE J. Sel. Top. Quantum Electron. 3, 105 (1997).
[CrossRef]

Antipov, O. L.

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob'ev, D. V. Bredikhin, and M. S. Kuznetsov, IEEE J. Quantum Electron. 39, 910 (2003).
[CrossRef]

Bochove, E.

E. Bochove, Opt. Commun. 29, 2414 (2004).

Bredikhin, D. V.

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob'ev, D. V. Bredikhin, and M. S. Kuznetsov, IEEE J. Quantum Electron. 39, 910 (2003).
[CrossRef]

Bruesselbach, H. W.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, IEEE J. Sel. Top. Quantum Electron. 3, 105 (1997).
[CrossRef]

Byren, R. W.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, IEEE J. Sel. Top. Quantum Electron. 3, 105 (1997).
[CrossRef]

Chen, W.

Contag, K.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, IEEE J. Sel. Top. Quantum Electron. 6, 650 (2000).
[CrossRef]

Deng, P.

Dong, J.

Eichler, H. J.

H. J. Eichler, P. Gunter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, 1986).

Eremeykin, O. N.

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob'ev, D. V. Bredikhin, and M. S. Kuznetsov, IEEE J. Quantum Electron. 39, 910 (2003).
[CrossRef]

Giesen, A.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, IEEE J. Sel. Top. Quantum Electron. 6, 650 (2000).
[CrossRef]

Gunter, P.

H. J. Eichler, P. Gunter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, 1986).

Hügel, H.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, IEEE J. Sel. Top. Quantum Electron. 6, 650 (2000).
[CrossRef]

Krupke, W. F.

W. F. Krupke, IEEE J. Sel. Top. Quantum Electron. 6, 1287 (2000).
[CrossRef]

Kuznetsov, M. S.

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob'ev, D. V. Bredikhin, and M. S. Kuznetsov, IEEE J. Quantum Electron. 39, 910 (2003).
[CrossRef]

Larionov, M.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, IEEE J. Sel. Top. Quantum Electron. 6, 650 (2000).
[CrossRef]

Liu, Y.

Pohl, D. W.

H. J. Eichler, P. Gunter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, 1986).

Powel, R. C.

R. C. Powel, Physics of Solid-State Laser Materials (Springer-Verlag, 1998).
[CrossRef]

Reeder, R. A.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, IEEE J. Sel. Top. Quantum Electron. 3, 105 (1997).
[CrossRef]

Savikin, A. P.

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob'ev, D. V. Bredikhin, and M. S. Kuznetsov, IEEE J. Quantum Electron. 39, 910 (2003).
[CrossRef]

Stewen, C.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, IEEE J. Sel. Top. Quantum Electron. 6, 650 (2000).
[CrossRef]

Sumida, D. S.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, IEEE J. Sel. Top. Quantum Electron. 3, 105 (1997).
[CrossRef]

Vorob'ev, V. A.

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob'ev, D. V. Bredikhin, and M. S. Kuznetsov, IEEE J. Quantum Electron. 39, 910 (2003).
[CrossRef]

Xie, X.

Xu, J.

Zhang, Y.

Appl. Opt.

IEEE J. Quantum Electron.

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob'ev, D. V. Bredikhin, and M. S. Kuznetsov, IEEE J. Quantum Electron. 39, 910 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

W. F. Krupke, IEEE J. Sel. Top. Quantum Electron. 6, 1287 (2000).
[CrossRef]

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, IEEE J. Sel. Top. Quantum Electron. 3, 105 (1997).
[CrossRef]

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, IEEE J. Sel. Top. Quantum Electron. 6, 650 (2000).
[CrossRef]

Opt. Commun.

E. Bochove, Opt. Commun. 29, 2414 (2004).

Other

H. J. Eichler, P. Gunter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, 1986).

R. C. Powel, Physics of Solid-State Laser Materials (Springer-Verlag, 1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the polarization interferometer: 1, 7, 8, 9, lenses; 2, polarization beam splitter; 3, Yb:YAG disk with a mirror at 633 nm ; 4, semireflecting mirror; 5, Glan prism; 6, mirror; 10, two-channel receiver with an electronic differential amplifier; 11, signal analyzer; 12, diode laser at 941 nm .

Fig. 2
Fig. 2

Typical experimentally measured oscillogram of the index change (wider, lighter curve) and its numerical approximation by two exponents (thinner, darker curve) at a pump power of 2 W . The approximation parameters are presented in the inset.

Fig. 3
Fig. 3

Schematic of the transient grating measurement.

Fig. 4
Fig. 4

Experimentally measured temporal behavior (light and dark dots) of the intensity of a diffracted beam for values of Λ of 1, 52; 2, 39; and 3, 26 μ m . Solid curves denote the fitted double-exponential curves as described by Eq. (2). Inset (a) two-exponential analysis of the index change Δ n [determined by D ( t ) ]; data are presented on a logarithmic scale. Inset (b) weighted residual for curve 3.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ n e = 2 π F L 2 Δ p Δ N n 0 , Δ n T = ( n T ) Δ T ,
D ( t ) = ( π l λ r ) 2 [ Δ n e ¯ exp ( t τ e ) + Δ n T ¯ exp ( t τ T ) ] 2 ,
Δ p = η e D ( 0 ) n 0 h c λ r 2 π 2 F I 2 λ p E p [ 1 exp ( 2 α 1 ) ] ,
( n T ) = η T D ( 0 ) C p ρ λ r π W p η p [ 1 exp ( 2 α 1 ) ] ,

Metrics