Abstract

The influence of the slow-light effect on the performance of distributed Brillouin sensors is studied. We show that, while in most situations it can be neglected, it may greatly affect the results obtained for certain experimental configurations. More specifically, for one of the experimental arrangements described in the literature (a strong continuous-wave pump and a weak pulsed probe) we show that this effect induces a large time biasing of the traces that depends not only on the fiber length but also on the frequency separation between pump and probe. This biasing reduces the available resolution in this experimental arrangement.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Horiguchi and M. Tateda, Opt. Lett. 14, 408 (1989).
    [CrossRef] [PubMed]
  2. L. Thévenaz, M. Facchini, A. Fellay, and P. Robert, in Proc. SPIE 3746, 343 (1999).
  3. S. M. Maughan, H. H. Kee, and T. P. Newson, Opt. Lett. 26, 331 (2001).
    [CrossRef]
  4. M. Niklès, L. Thévenaz, and P. A. Robert, Opt. Lett. 21, 758 (1996).
    [CrossRef] [PubMed]
  5. X. Bao, D. J. Webb, and D. Jackson, Opt. Lett. 18, 1561 (1993).
    [CrossRef] [PubMed]
  6. D. Garus, K. Krebber, F. Schliep, and T. Gogolla, Opt. Lett. 21, 1402 (1996).
    [CrossRef] [PubMed]
  7. K. Hotate and M. Tanaka, IEEE Photon. Technol. Lett. 14, 179 (2002).
    [CrossRef]
  8. K. Y. Song, M. G. Herráez, and L. Thévenaz, Opt. Express 13, 82 (2005).
    [CrossRef] [PubMed]
  9. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).
  10. R. W. Boyd, K. Rzazewski, and P. Narum, Phys. Rev. A 42, 5514 (1990).
    [CrossRef] [PubMed]

2005 (1)

2002 (1)

K. Hotate and M. Tanaka, IEEE Photon. Technol. Lett. 14, 179 (2002).
[CrossRef]

2001 (1)

1999 (1)

L. Thévenaz, M. Facchini, A. Fellay, and P. Robert, in Proc. SPIE 3746, 343 (1999).

1996 (2)

1993 (1)

1990 (1)

R. W. Boyd, K. Rzazewski, and P. Narum, Phys. Rev. A 42, 5514 (1990).
[CrossRef] [PubMed]

1989 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

Bao, X.

Boyd, R. W.

R. W. Boyd, K. Rzazewski, and P. Narum, Phys. Rev. A 42, 5514 (1990).
[CrossRef] [PubMed]

Facchini, M.

L. Thévenaz, M. Facchini, A. Fellay, and P. Robert, in Proc. SPIE 3746, 343 (1999).

Fellay, A.

L. Thévenaz, M. Facchini, A. Fellay, and P. Robert, in Proc. SPIE 3746, 343 (1999).

Garus, D.

Gogolla, T.

Herráez, M. G.

Horiguchi, T.

Hotate, K.

K. Hotate and M. Tanaka, IEEE Photon. Technol. Lett. 14, 179 (2002).
[CrossRef]

Jackson, D.

Kee, H. H.

Krebber, K.

Maughan, S. M.

Narum, P.

R. W. Boyd, K. Rzazewski, and P. Narum, Phys. Rev. A 42, 5514 (1990).
[CrossRef] [PubMed]

Newson, T. P.

Niklès, M.

Robert, P.

L. Thévenaz, M. Facchini, A. Fellay, and P. Robert, in Proc. SPIE 3746, 343 (1999).

Robert, P. A.

Rzazewski, K.

R. W. Boyd, K. Rzazewski, and P. Narum, Phys. Rev. A 42, 5514 (1990).
[CrossRef] [PubMed]

Schliep, F.

Song, K. Y.

Tanaka, M.

K. Hotate and M. Tanaka, IEEE Photon. Technol. Lett. 14, 179 (2002).
[CrossRef]

Tateda, M.

Thévenaz, L.

Webb, D. J.

IEEE Photon. Technol. Lett. (1)

K. Hotate and M. Tanaka, IEEE Photon. Technol. Lett. 14, 179 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Phys. Rev. A (1)

R. W. Boyd, K. Rzazewski, and P. Narum, Phys. Rev. A 42, 5514 (1990).
[CrossRef] [PubMed]

Proc. SPIE (1)

L. Thévenaz, M. Facchini, A. Fellay, and P. Robert, in Proc. SPIE 3746, 343 (1999).

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schemes for performing distributed Brillouin sensing.

Fig. 2
Fig. 2

Principle of group-velocity changes induced by the Brillouin interaction in optical fibers.

Fig. 3
Fig. 3

Probe pulse delay as a function of distance for the BOTDA-2 configuration; the pump power is 6 mW .

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d A s d z = g B 2 A eff A cw 2 1 + 2 j ( ν ν B Δ ν B ) A s α 2 A s ,
I cw ( z ) = A cw ( z ) 2 = I o exp [ α ( L z ) ] ,
A s ( z ) = A s ( 0 ) exp [ G ( z ) 2 j Φ ( z ) ] exp [ ( α 2 ) z ] ,
G ( z , ν ) = g B 1 1 + ( ν ν B Δ ν B 2 ) 2 I 0 e α L e α z 1 α ,
Φ ( z , ν ) = 1 2 g B ν ν B Δ ν B 2 1 + ( ν ν B Δ ν B 2 ) 2 I o e α L e α z 1 α .
Δ V g 1 = Δ N g ( z , ν ) c = 1 2 π d Δ β ( z , ν ) d ν = 1 2 g B I o e α L e α z 1 α z 2 2 π Δ ν B 1 3 ( ν ν B Δ ν B 2 ) 2 [ 1 + ( ν ν B Δ ν B 2 ) 2 ] 2 ,

Metrics