Abstract

The impact of ice 1h formation inside the holes of a photonic crystal fiber Bragg grating was analyzed and discussed. As a result of the ice’s expansion, a broadening of the grating spectrum was observed that corresponds to internal microbending of the fiber and after some temperature cycling leads to failure of the fiber. An analytical model with which to estimate the internal compression forces is proposed, and the calculated values are found to be in agreement with reported data.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Dragomir, J. G. McInerney, and D. N. Nikogosyan, Appl. Phys. Lett. 80, 1114 (2002).
    [CrossRef]
  2. L. Kaiser and H. W. Astle, Bell Syst. Tech. J. 53, 1021 (1974).
  3. www.crystal-fibre.com and www.centaurus.com.au.
  4. N. Groothoff, J. Canning, E. Buckley, K. Lyytikainen, and J. Zagari, Opt. Lett. 28, 233 (2003).
    [CrossRef] [PubMed]
  5. M. Rothschild, D. Ehrlich, and D. C. Shaver, Appl. Phys. Lett. 55, 1276 (1989).
    [CrossRef]
  6. M. Janos, J. Canning, and M. G. Sceats, Opt. Lett. 21, 1827 (1996).
    [CrossRef] [PubMed]
  7. O. A. Kiseleva, S. N. Klad'ko, V. D. Sobolev, and N. V. Churaev, Colloid J. USSR 37, 1119 (1976).
  8. V. F. Petrenko and R. W. Whitworth, Physics of Ice (Oxford U. Press, 1999).
  9. G. A. Ball and W. W. Morey, Opt. Lett. 23, 1979 (1994).
    [CrossRef]
  10. J. Canning, E. Buckley, S. Huntington, and K. Lyytikäinen, Electrochim. Acta 49, 3581 (2004).
    [CrossRef]
  11. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, Opt. Express 13, 236 (2005).
    [CrossRef] [PubMed]

2005 (1)

2004 (1)

J. Canning, E. Buckley, S. Huntington, and K. Lyytikäinen, Electrochim. Acta 49, 3581 (2004).
[CrossRef]

2003 (1)

2002 (1)

A. Dragomir, J. G. McInerney, and D. N. Nikogosyan, Appl. Phys. Lett. 80, 1114 (2002).
[CrossRef]

1996 (1)

1994 (1)

G. A. Ball and W. W. Morey, Opt. Lett. 23, 1979 (1994).
[CrossRef]

1989 (1)

M. Rothschild, D. Ehrlich, and D. C. Shaver, Appl. Phys. Lett. 55, 1276 (1989).
[CrossRef]

1976 (1)

O. A. Kiseleva, S. N. Klad'ko, V. D. Sobolev, and N. V. Churaev, Colloid J. USSR 37, 1119 (1976).

1974 (1)

L. Kaiser and H. W. Astle, Bell Syst. Tech. J. 53, 1021 (1974).

Astle, H. W.

L. Kaiser and H. W. Astle, Bell Syst. Tech. J. 53, 1021 (1974).

Ball, G. A.

G. A. Ball and W. W. Morey, Opt. Lett. 23, 1979 (1994).
[CrossRef]

Birks, T. A.

Buckley, E.

J. Canning, E. Buckley, S. Huntington, and K. Lyytikäinen, Electrochim. Acta 49, 3581 (2004).
[CrossRef]

N. Groothoff, J. Canning, E. Buckley, K. Lyytikainen, and J. Zagari, Opt. Lett. 28, 233 (2003).
[CrossRef] [PubMed]

Canning, J.

Churaev, N. V.

O. A. Kiseleva, S. N. Klad'ko, V. D. Sobolev, and N. V. Churaev, Colloid J. USSR 37, 1119 (1976).

Couny, F.

Dragomir, A.

A. Dragomir, J. G. McInerney, and D. N. Nikogosyan, Appl. Phys. Lett. 80, 1114 (2002).
[CrossRef]

Ehrlich, D.

M. Rothschild, D. Ehrlich, and D. C. Shaver, Appl. Phys. Lett. 55, 1276 (1989).
[CrossRef]

Farr, L.

Groothoff, N.

Huntington, S.

J. Canning, E. Buckley, S. Huntington, and K. Lyytikäinen, Electrochim. Acta 49, 3581 (2004).
[CrossRef]

Janos, M.

Kaiser, L.

L. Kaiser and H. W. Astle, Bell Syst. Tech. J. 53, 1021 (1974).

Kiseleva, O. A.

O. A. Kiseleva, S. N. Klad'ko, V. D. Sobolev, and N. V. Churaev, Colloid J. USSR 37, 1119 (1976).

Klad'ko, S. N.

O. A. Kiseleva, S. N. Klad'ko, V. D. Sobolev, and N. V. Churaev, Colloid J. USSR 37, 1119 (1976).

Knight, J. C.

Lyytikainen, K.

Lyytikäinen, K.

J. Canning, E. Buckley, S. Huntington, and K. Lyytikäinen, Electrochim. Acta 49, 3581 (2004).
[CrossRef]

Mangan, B. J.

Mason, M. W.

McInerney, J. G.

A. Dragomir, J. G. McInerney, and D. N. Nikogosyan, Appl. Phys. Lett. 80, 1114 (2002).
[CrossRef]

Morey, W. W.

G. A. Ball and W. W. Morey, Opt. Lett. 23, 1979 (1994).
[CrossRef]

Nikogosyan, D. N.

A. Dragomir, J. G. McInerney, and D. N. Nikogosyan, Appl. Phys. Lett. 80, 1114 (2002).
[CrossRef]

Petrenko, V. F.

V. F. Petrenko and R. W. Whitworth, Physics of Ice (Oxford U. Press, 1999).

Roberts, P. J.

Rothschild, M.

M. Rothschild, D. Ehrlich, and D. C. Shaver, Appl. Phys. Lett. 55, 1276 (1989).
[CrossRef]

Russell, P. St.

Sabert, H.

Sceats, M. G.

Shaver, D. C.

M. Rothschild, D. Ehrlich, and D. C. Shaver, Appl. Phys. Lett. 55, 1276 (1989).
[CrossRef]

Sobolev, V. D.

O. A. Kiseleva, S. N. Klad'ko, V. D. Sobolev, and N. V. Churaev, Colloid J. USSR 37, 1119 (1976).

Tomlinson, A.

Whitworth, R. W.

V. F. Petrenko and R. W. Whitworth, Physics of Ice (Oxford U. Press, 1999).

Williams, D. P.

Zagari, J.

Appl. Phys. Lett. (2)

A. Dragomir, J. G. McInerney, and D. N. Nikogosyan, Appl. Phys. Lett. 80, 1114 (2002).
[CrossRef]

M. Rothschild, D. Ehrlich, and D. C. Shaver, Appl. Phys. Lett. 55, 1276 (1989).
[CrossRef]

Bell Syst. Tech. J. (1)

L. Kaiser and H. W. Astle, Bell Syst. Tech. J. 53, 1021 (1974).

Colloid J. USSR (1)

O. A. Kiseleva, S. N. Klad'ko, V. D. Sobolev, and N. V. Churaev, Colloid J. USSR 37, 1119 (1976).

Electrochim. Acta (1)

J. Canning, E. Buckley, S. Huntington, and K. Lyytikäinen, Electrochim. Acta 49, 3581 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Other (2)

V. F. Petrenko and R. W. Whitworth, Physics of Ice (Oxford U. Press, 1999).

www.crystal-fibre.com and www.centaurus.com.au.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Evolution of the reflection spectra of a fiber Bragg grating with temperature.

Fig. 2
Fig. 2

Schematic representation of the interface between ice and silica in the holes of the fiber, where δ is the thickness of the supercooled liquid layer and the force vectors that correspond to the force generated at the interface are illustrated by arrows. The figure is not drawn to scale.

Fig. 3
Fig. 3

Picture of the fiber after temperature cycling, showing microscopic damage in the fiber structure.

Fig. 4
Fig. 4

Schematic representation of the proposed model for the chirp-induced grating. The vectors F Comp correspond to the forces from the extremities to the center, Λ 0 is the period of the grating before compression, and Λ ( ϵ ) is the deformed period as a function of induced strain.

Fig. 5
Fig. 5

Calculated net compression force inside the fiber versus variation in temperature.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ λ ( ϵ ) = λ 0 λ ( ϵ ) = 2 n eff Δ Λ ,
Δ λ = ( 5.88 6.66 T ) × 10 3 .
ϵ ( T ) = ( 5.88 6.66 T ) × 10 3 λ 0 ( T ) .
F ( T ) comp = ϵ ( T ) × E × A Fiber ,

Metrics