Abstract

A demodulation algorithm for spatial-frequency-division-multiplexed fiber-optic Fizeau strain sensor networks with a large number of sensors is proposed to effectively reduce the cross talk between any two adjacent sensors and hence substantially enhance the multiplexing capability of the network, which is based on the Pisarenko algorithm. The cross talk between two fiber-optic Fizeau sensors is investigated experimentally. The experimental results show that a strain accuracy of better than ±10μϵ can be achieved even when the cavity length difference is 100μm. It was demonstrated that the multiplexing capability of the spatial-frequency-division-multiplexed fiber-optic Fizeau sensor network can be 5 times greater than that of the conventional fast-Fourier-transform algorithm, and this can lead to achievement of a sensing network with a multiplexing capability of as many as 1000 Fizeau sensors.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, Meas. Sci. Technol. 7, 581 (1996).
    [CrossRef]
  2. H. F. Taylor, in Fiber Optic Sensors, F.T. Y.Yu, ed. (Marcel-Dekker, 2002), p. 41.
  3. T. K. Gangopadhyay and P. J. Henderson, Appl. Opt. 38, 2471 (1999).
    [CrossRef]
  4. Y. J. Rao, D. A. Jackson, R. Jones, and C. Shannon, J. Lightwave Technol. 12, 1685 (1994).
    [CrossRef]
  5. Y. J. Rao, C. X. Zhou, and T. Zhu, IEEE Photon. Technol. Lett. 17, 1259 (2005).
    [CrossRef]
  6. S. M. Musa, "Real-time signal processing and hardware development for a wavelength modulated optical fiber sensor system," Ph.D. dissertation (Virginia Polytechnic Institute and State University, 1997).
  7. T. K. Gangopadhyay, S. Chakravorti, K. Bhattacharya, and S. Chatterjee, Meas. Sci. Technol. 16, 1075 (2005).
    [CrossRef]
  8. G. F. Fernando and T. Liu, Rev. Sci. Instrum. 71, 1275 (2000).
    [CrossRef]
  9. X. D. Zhang, Modern Signal Processing (Tinghua U. Press, 2002).
  10. K. Murphy, M. Gunther, A. Vengsarkar, and R. Claus, Opt. Lett. 16, 273 (1991).
    [CrossRef] [PubMed]
  11. J. A. Cadzow, IEEE Trans. Acoust. Speech Signal Process. 36, 49 (1998).
    [CrossRef]

2005 (2)

Y. J. Rao, C. X. Zhou, and T. Zhu, IEEE Photon. Technol. Lett. 17, 1259 (2005).
[CrossRef]

T. K. Gangopadhyay, S. Chakravorti, K. Bhattacharya, and S. Chatterjee, Meas. Sci. Technol. 16, 1075 (2005).
[CrossRef]

2000 (1)

G. F. Fernando and T. Liu, Rev. Sci. Instrum. 71, 1275 (2000).
[CrossRef]

1999 (1)

1998 (1)

J. A. Cadzow, IEEE Trans. Acoust. Speech Signal Process. 36, 49 (1998).
[CrossRef]

1996 (1)

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, Meas. Sci. Technol. 7, 581 (1996).
[CrossRef]

1994 (1)

Y. J. Rao, D. A. Jackson, R. Jones, and C. Shannon, J. Lightwave Technol. 12, 1685 (1994).
[CrossRef]

1991 (1)

Bhatia, V.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, Meas. Sci. Technol. 7, 581 (1996).
[CrossRef]

Bhattacharya, K.

T. K. Gangopadhyay, S. Chakravorti, K. Bhattacharya, and S. Chatterjee, Meas. Sci. Technol. 16, 1075 (2005).
[CrossRef]

Cadzow, J. A.

J. A. Cadzow, IEEE Trans. Acoust. Speech Signal Process. 36, 49 (1998).
[CrossRef]

Chakravorti, S.

T. K. Gangopadhyay, S. Chakravorti, K. Bhattacharya, and S. Chatterjee, Meas. Sci. Technol. 16, 1075 (2005).
[CrossRef]

Chatterjee, S.

T. K. Gangopadhyay, S. Chakravorti, K. Bhattacharya, and S. Chatterjee, Meas. Sci. Technol. 16, 1075 (2005).
[CrossRef]

Claus, R.

Claus, R. O.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, Meas. Sci. Technol. 7, 581 (1996).
[CrossRef]

Fernando, G. F.

G. F. Fernando and T. Liu, Rev. Sci. Instrum. 71, 1275 (2000).
[CrossRef]

Gangopadhyay, T. K.

T. K. Gangopadhyay, S. Chakravorti, K. Bhattacharya, and S. Chatterjee, Meas. Sci. Technol. 16, 1075 (2005).
[CrossRef]

T. K. Gangopadhyay and P. J. Henderson, Appl. Opt. 38, 2471 (1999).
[CrossRef]

Grace, J. L.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, Meas. Sci. Technol. 7, 581 (1996).
[CrossRef]

Greene, J. A.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, Meas. Sci. Technol. 7, 581 (1996).
[CrossRef]

Gunther, M.

Henderson, P. J.

Jackson, D. A.

Y. J. Rao, D. A. Jackson, R. Jones, and C. Shannon, J. Lightwave Technol. 12, 1685 (1994).
[CrossRef]

Jones, M. E.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, Meas. Sci. Technol. 7, 581 (1996).
[CrossRef]

Jones, R.

Y. J. Rao, D. A. Jackson, R. Jones, and C. Shannon, J. Lightwave Technol. 12, 1685 (1994).
[CrossRef]

Liu, T.

G. F. Fernando and T. Liu, Rev. Sci. Instrum. 71, 1275 (2000).
[CrossRef]

Murphy, K.

Murphy, K. A.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, Meas. Sci. Technol. 7, 581 (1996).
[CrossRef]

Musa, S. M.

S. M. Musa, "Real-time signal processing and hardware development for a wavelength modulated optical fiber sensor system," Ph.D. dissertation (Virginia Polytechnic Institute and State University, 1997).

Rao, Y. J.

Y. J. Rao, C. X. Zhou, and T. Zhu, IEEE Photon. Technol. Lett. 17, 1259 (2005).
[CrossRef]

Y. J. Rao, D. A. Jackson, R. Jones, and C. Shannon, J. Lightwave Technol. 12, 1685 (1994).
[CrossRef]

Shannon, C.

Y. J. Rao, D. A. Jackson, R. Jones, and C. Shannon, J. Lightwave Technol. 12, 1685 (1994).
[CrossRef]

Taylor, H. F.

H. F. Taylor, in Fiber Optic Sensors, F.T. Y.Yu, ed. (Marcel-Dekker, 2002), p. 41.

Tran, T. A.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, Meas. Sci. Technol. 7, 581 (1996).
[CrossRef]

Vengsarkar, A.

Zhang, X. D.

X. D. Zhang, Modern Signal Processing (Tinghua U. Press, 2002).

Zhou, C. X.

Y. J. Rao, C. X. Zhou, and T. Zhu, IEEE Photon. Technol. Lett. 17, 1259 (2005).
[CrossRef]

Zhu, T.

Y. J. Rao, C. X. Zhou, and T. Zhu, IEEE Photon. Technol. Lett. 17, 1259 (2005).
[CrossRef]

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (1)

Y. J. Rao, C. X. Zhou, and T. Zhu, IEEE Photon. Technol. Lett. 17, 1259 (2005).
[CrossRef]

IEEE Trans. Acoust. Speech Signal Process. (1)

J. A. Cadzow, IEEE Trans. Acoust. Speech Signal Process. 36, 49 (1998).
[CrossRef]

J. Lightwave Technol. (1)

Y. J. Rao, D. A. Jackson, R. Jones, and C. Shannon, J. Lightwave Technol. 12, 1685 (1994).
[CrossRef]

Meas. Sci. Technol. (2)

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, Meas. Sci. Technol. 7, 581 (1996).
[CrossRef]

T. K. Gangopadhyay, S. Chakravorti, K. Bhattacharya, and S. Chatterjee, Meas. Sci. Technol. 16, 1075 (2005).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

G. F. Fernando and T. Liu, Rev. Sci. Instrum. 71, 1275 (2000).
[CrossRef]

Other (3)

X. D. Zhang, Modern Signal Processing (Tinghua U. Press, 2002).

S. M. Musa, "Real-time signal processing and hardware development for a wavelength modulated optical fiber sensor system," Ph.D. dissertation (Virginia Polytechnic Institute and State University, 1997).

H. F. Taylor, in Fiber Optic Sensors, F.T. Y.Yu, ed. (Marcel-Dekker, 2002), p. 41.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup.

Fig. 2
Fig. 2

Experimental results of the cross-talk test.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I R = R 1 + R 2 + 2 R 1 R 2 cos ϕ 1 + R 1 R 2 + 2 R 1 R 2 cos ϕ I i ,
ϕ = 4 π n l λ ,
δ λ = λ max λ min N 1 ,
δ v = δ λ λ p 2 .
I A + B 1 cos ϕ + β 2 cos 2 ϕ = A + B cos ϕ + B 2 cos 2 ϕ ,
[ I ( 2 p ) + I ( 2 ) I ( 2 p 1 ) + I ( 3 ) I ( p + 1 ) I ( 2 p + 1 ) + I ( 3 ) I ( 2 p ) + I ( 4 ) I ( p + 2 ) I ( N 1 ) + I ( N 2 p + 1 ) I ( N 2 ) + I ( N 2 p + 2 ) I ( N p ) ] [ a 1 a 2 a p ] = [ I ( 2 p + 1 ) + I ( 1 ) I ( 2 p + 2 ) + I ( 2 ) I ( N ) + I ( N 2 p ) ] ,
f k = arctan [ Im ( z k ) Re ( z k ) ] 2 π Δ t , k = 1 , 2 , , p ,
C = U Σ V H = k = 1 p + 1 σ k u k v k H .
l k = f k 2 δ v = f k λ p 2 2 δ λ .
ϵ k = f k λ p 2 2 δ λ l k L , k = 1 , 2 , , p ,

Metrics