Abstract

We experimentally demonstrate a wavelength-spacing tunable multiwavelength erbium-doped fiber laser based on degenerate four-wave mixing in a dispersion-shifted fiber incorporating multiple-fiber Bragg gratings. We have achieved stable operation of the multiwavelength erbium-doped fiber laser, which has 0.8 nm spacing ten-channel lasing wavelengths and a high extinction ratio of more than 45dB, at room temperature. The output power of the multiwavelength erbium-doped fiber laser is stable, so the peak fluctuation is less than 0.2dB. By changing the properties such as loss and polarization state of multiple fiber Bragg grating cavities, we can exercise flexible control of the wavelength spacing of the multiwavelength output. We can also obtain switchable multiwavelength lasing operation by elimination of the effects of alternate single-fiber Bragg gratings.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Park and P. F. Wysocki, IEEE Photon. Technol. Lett. 8, 1459 (1996).
    [CrossRef]
  2. A. Bellemare, M. Karasek, M. Rochette, S. LaRochelle, and M. Tetu, J. Lightwave Technol. 18, 825 (2000).
    [CrossRef]
  3. Y. G. Han, G. Kim, J. H. Lee, S. H. Kim, and S. B. Lee, IEEE Photon. Technol. Lett. 17, 989 (2005).
    [CrossRef]
  4. F. W. Tong, W. Jin, D. N. Wang, and P. K. A. Wai, Electron. Lett. 40, 594 (2004).
    [CrossRef]
  5. X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Y. Chai, E. Leong, and C. Lu, IEEE Photon. Technol. Lett. 17, 1626 (2005).
    [CrossRef]
  6. S. Hu, L. Zhan, Y. J. Song, W. Li, S. Y. Luo, and Y. X. Zia, IEEE Photon. Technol. Lett. 17, 1387 (2005).
    [CrossRef]
  7. H. Chen, Opt. Lett. 30, 619 (2005).
    [CrossRef] [PubMed]
  8. Y. G. Han, C. S. Kim, J. U. Kang, U. C. Paek, and Y. Chung, IEEE Photon. Technol. Lett. 15, 383 (2003).
    [CrossRef]
  9. Y. G. Han, T. V. A. Tran, S. H. Kim, and S. B. Lee, Opt. Lett. 30, 1282 (2005).
    [CrossRef] [PubMed]

2005 (5)

Y. G. Han, G. Kim, J. H. Lee, S. H. Kim, and S. B. Lee, IEEE Photon. Technol. Lett. 17, 989 (2005).
[CrossRef]

X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Y. Chai, E. Leong, and C. Lu, IEEE Photon. Technol. Lett. 17, 1626 (2005).
[CrossRef]

S. Hu, L. Zhan, Y. J. Song, W. Li, S. Y. Luo, and Y. X. Zia, IEEE Photon. Technol. Lett. 17, 1387 (2005).
[CrossRef]

H. Chen, Opt. Lett. 30, 619 (2005).
[CrossRef] [PubMed]

Y. G. Han, T. V. A. Tran, S. H. Kim, and S. B. Lee, Opt. Lett. 30, 1282 (2005).
[CrossRef] [PubMed]

2004 (1)

F. W. Tong, W. Jin, D. N. Wang, and P. K. A. Wai, Electron. Lett. 40, 594 (2004).
[CrossRef]

2003 (1)

Y. G. Han, C. S. Kim, J. U. Kang, U. C. Paek, and Y. Chung, IEEE Photon. Technol. Lett. 15, 383 (2003).
[CrossRef]

2000 (1)

1996 (1)

N. Park and P. F. Wysocki, IEEE Photon. Technol. Lett. 8, 1459 (1996).
[CrossRef]

Bellemare, A.

Chai, T. Y.

X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Y. Chai, E. Leong, and C. Lu, IEEE Photon. Technol. Lett. 17, 1626 (2005).
[CrossRef]

Chen, H.

Chung, Y.

Y. G. Han, C. S. Kim, J. U. Kang, U. C. Paek, and Y. Chung, IEEE Photon. Technol. Lett. 15, 383 (2003).
[CrossRef]

Han, Y. G.

Y. G. Han, T. V. A. Tran, S. H. Kim, and S. B. Lee, Opt. Lett. 30, 1282 (2005).
[CrossRef] [PubMed]

Y. G. Han, G. Kim, J. H. Lee, S. H. Kim, and S. B. Lee, IEEE Photon. Technol. Lett. 17, 989 (2005).
[CrossRef]

Y. G. Han, C. S. Kim, J. U. Kang, U. C. Paek, and Y. Chung, IEEE Photon. Technol. Lett. 15, 383 (2003).
[CrossRef]

Hao, J.

X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Y. Chai, E. Leong, and C. Lu, IEEE Photon. Technol. Lett. 17, 1626 (2005).
[CrossRef]

Hu, S.

S. Hu, L. Zhan, Y. J. Song, W. Li, S. Y. Luo, and Y. X. Zia, IEEE Photon. Technol. Lett. 17, 1387 (2005).
[CrossRef]

Jin, W.

F. W. Tong, W. Jin, D. N. Wang, and P. K. A. Wai, Electron. Lett. 40, 594 (2004).
[CrossRef]

Kang, J. U.

Y. G. Han, C. S. Kim, J. U. Kang, U. C. Paek, and Y. Chung, IEEE Photon. Technol. Lett. 15, 383 (2003).
[CrossRef]

Karasek, M.

Kim, C. S.

Y. G. Han, C. S. Kim, J. U. Kang, U. C. Paek, and Y. Chung, IEEE Photon. Technol. Lett. 15, 383 (2003).
[CrossRef]

Kim, G.

Y. G. Han, G. Kim, J. H. Lee, S. H. Kim, and S. B. Lee, IEEE Photon. Technol. Lett. 17, 989 (2005).
[CrossRef]

Kim, S. H.

Y. G. Han, G. Kim, J. H. Lee, S. H. Kim, and S. B. Lee, IEEE Photon. Technol. Lett. 17, 989 (2005).
[CrossRef]

Y. G. Han, T. V. A. Tran, S. H. Kim, and S. B. Lee, Opt. Lett. 30, 1282 (2005).
[CrossRef] [PubMed]

LaRochelle, S.

Lee, J. H.

Y. G. Han, G. Kim, J. H. Lee, S. H. Kim, and S. B. Lee, IEEE Photon. Technol. Lett. 17, 989 (2005).
[CrossRef]

Lee, S. B.

Y. G. Han, G. Kim, J. H. Lee, S. H. Kim, and S. B. Lee, IEEE Photon. Technol. Lett. 17, 989 (2005).
[CrossRef]

Y. G. Han, T. V. A. Tran, S. H. Kim, and S. B. Lee, Opt. Lett. 30, 1282 (2005).
[CrossRef] [PubMed]

Leong, E.

X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Y. Chai, E. Leong, and C. Lu, IEEE Photon. Technol. Lett. 17, 1626 (2005).
[CrossRef]

Li, W.

S. Hu, L. Zhan, Y. J. Song, W. Li, S. Y. Luo, and Y. X. Zia, IEEE Photon. Technol. Lett. 17, 1387 (2005).
[CrossRef]

Liu, X.

X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Y. Chai, E. Leong, and C. Lu, IEEE Photon. Technol. Lett. 17, 1626 (2005).
[CrossRef]

Lu, C.

X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Y. Chai, E. Leong, and C. Lu, IEEE Photon. Technol. Lett. 17, 1626 (2005).
[CrossRef]

Luo, S. Y.

S. Hu, L. Zhan, Y. J. Song, W. Li, S. Y. Luo, and Y. X. Zia, IEEE Photon. Technol. Lett. 17, 1387 (2005).
[CrossRef]

Ng, J.

X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Y. Chai, E. Leong, and C. Lu, IEEE Photon. Technol. Lett. 17, 1626 (2005).
[CrossRef]

Paek, U. C.

Y. G. Han, C. S. Kim, J. U. Kang, U. C. Paek, and Y. Chung, IEEE Photon. Technol. Lett. 15, 383 (2003).
[CrossRef]

Park, N.

N. Park and P. F. Wysocki, IEEE Photon. Technol. Lett. 8, 1459 (1996).
[CrossRef]

Rochette, M.

Song, Y. J.

S. Hu, L. Zhan, Y. J. Song, W. Li, S. Y. Luo, and Y. X. Zia, IEEE Photon. Technol. Lett. 17, 1387 (2005).
[CrossRef]

Tang, X.

X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Y. Chai, E. Leong, and C. Lu, IEEE Photon. Technol. Lett. 17, 1626 (2005).
[CrossRef]

Tetu, M.

Tong, F. W.

F. W. Tong, W. Jin, D. N. Wang, and P. K. A. Wai, Electron. Lett. 40, 594 (2004).
[CrossRef]

Tran, T. V.

Wai, P. K.

F. W. Tong, W. Jin, D. N. Wang, and P. K. A. Wai, Electron. Lett. 40, 594 (2004).
[CrossRef]

Wang, D. N.

F. W. Tong, W. Jin, D. N. Wang, and P. K. A. Wai, Electron. Lett. 40, 594 (2004).
[CrossRef]

Wysocki, P. F.

N. Park and P. F. Wysocki, IEEE Photon. Technol. Lett. 8, 1459 (1996).
[CrossRef]

Zhan, L.

S. Hu, L. Zhan, Y. J. Song, W. Li, S. Y. Luo, and Y. X. Zia, IEEE Photon. Technol. Lett. 17, 1387 (2005).
[CrossRef]

Zhou, X.

X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Y. Chai, E. Leong, and C. Lu, IEEE Photon. Technol. Lett. 17, 1626 (2005).
[CrossRef]

Zia, Y. X.

S. Hu, L. Zhan, Y. J. Song, W. Li, S. Y. Luo, and Y. X. Zia, IEEE Photon. Technol. Lett. 17, 1387 (2005).
[CrossRef]

Electron. Lett. (1)

F. W. Tong, W. Jin, D. N. Wang, and P. K. A. Wai, Electron. Lett. 40, 594 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Y. Chai, E. Leong, and C. Lu, IEEE Photon. Technol. Lett. 17, 1626 (2005).
[CrossRef]

S. Hu, L. Zhan, Y. J. Song, W. Li, S. Y. Luo, and Y. X. Zia, IEEE Photon. Technol. Lett. 17, 1387 (2005).
[CrossRef]

N. Park and P. F. Wysocki, IEEE Photon. Technol. Lett. 8, 1459 (1996).
[CrossRef]

Y. G. Han, C. S. Kim, J. U. Kang, U. C. Paek, and Y. Chung, IEEE Photon. Technol. Lett. 15, 383 (2003).
[CrossRef]

Y. G. Han, G. Kim, J. H. Lee, S. H. Kim, and S. B. Lee, IEEE Photon. Technol. Lett. 17, 989 (2005).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the proposed multiwavelength EDF laser based on degenerate four-wave mixing in the DSF. Multiwavelength operation can be achieved by eight FBGs connected to the AWG. PCs, polarization controllers; PMF, polarization-maintaining fiber; OSA, optical spectrum analyzer.

Fig. 2
Fig. 2

Reflection spectrum of eight FBGs connected to the AWG.

Fig. 3
Fig. 3

Output spectrum of the multiwavelength EDF at room temperature. We obtained 0.8 nm spacing ten-channel lasing wavelengths. The extinction ratio was as high as 45 dB .

Fig. 4
Fig. 4

Power fluctuation of the multiwavelength EDF laser during scanning. The power fluctuation was less than 0.2 dB .

Fig. 5
Fig. 5

Output spectra of the wavelength-spacing tunable multiwavelength EDF laser after alternate elimination of the effects of FBG4, FBG5, and FBG6. Δ λ = 1.6 nm .

Fig. 6
Fig. 6

Output spectra of the wavelength-spacing tunable multiwavelength EDF laser after the effects of two FBGs, i.e., FBG6, FBG7 and FBG4, FBG5, were eliminated simultaneously. Δ λ = 2.4 nm .

Metrics