Abstract

A compact cold atom beam source based on a multistage two-dimensional magneto-optical trap (MOT) has been demonstrated and characterized. The multiple-stage design greatly reduces the overall size of the source apparatus while providing a high flux of atoms. The cold atom beam was used to load a separate MOT in ultrahigh vacuum, and we obtained an actual trap loading rate of 1.5×109  atomss while using only 20mW of total laser power for the source. The entire source apparatus, including optics, can fit into a 4cm×4cm×13cm volume.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Raab, M. Prentiss, A. Cable, S. Chu, and D. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).
    [CrossRef] [PubMed]
  2. W. D. Phillips and H. Metcalf, Phys. Rev. Lett. 48, 596 (1982).
    [CrossRef]
  3. Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331 (1996).
    [CrossRef] [PubMed]
  4. S. Weyers, E. Aucouturier, C. Valentin, and N. Dimarcq, Opt. Commun. 143, 30 (1997).
    [CrossRef]
  5. K. Dieckmann, R. J. C. Spreeuw, M. Weidemüller, and J. T. M. Walraven, Phys. Rev. A 58, 3891 (1998).
    [CrossRef]
  6. P. Berthoud, A. Joyet, G. Dudle, N. Sagna, and P. Thomann, Europhys. Lett. 41, 141 (1998).
    [CrossRef]
  7. B. Ghaffari, J. M. Gerton, W. I. McAlexander, K. E. Strecker, D. M. Homan, and R. G. Hulet, Phys. Rev. A 60, 3878 (1999).
    [CrossRef]
  8. J. Schoser, A. Batär, R. Löw, V. Schweikhard, A. Grabowski, Yu. B. Ovchinnikov, and T. Pfau, Phys. Rev. A 66, 023410 (2002).
    [CrossRef]

2002 (1)

J. Schoser, A. Batär, R. Löw, V. Schweikhard, A. Grabowski, Yu. B. Ovchinnikov, and T. Pfau, Phys. Rev. A 66, 023410 (2002).
[CrossRef]

1999 (1)

B. Ghaffari, J. M. Gerton, W. I. McAlexander, K. E. Strecker, D. M. Homan, and R. G. Hulet, Phys. Rev. A 60, 3878 (1999).
[CrossRef]

1998 (2)

K. Dieckmann, R. J. C. Spreeuw, M. Weidemüller, and J. T. M. Walraven, Phys. Rev. A 58, 3891 (1998).
[CrossRef]

P. Berthoud, A. Joyet, G. Dudle, N. Sagna, and P. Thomann, Europhys. Lett. 41, 141 (1998).
[CrossRef]

1997 (1)

S. Weyers, E. Aucouturier, C. Valentin, and N. Dimarcq, Opt. Commun. 143, 30 (1997).
[CrossRef]

1996 (1)

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331 (1996).
[CrossRef] [PubMed]

1987 (1)

E. Raab, M. Prentiss, A. Cable, S. Chu, and D. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).
[CrossRef] [PubMed]

1982 (1)

W. D. Phillips and H. Metcalf, Phys. Rev. Lett. 48, 596 (1982).
[CrossRef]

Anderson, M. H.

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331 (1996).
[CrossRef] [PubMed]

Aucouturier, E.

S. Weyers, E. Aucouturier, C. Valentin, and N. Dimarcq, Opt. Commun. 143, 30 (1997).
[CrossRef]

Batär, A.

J. Schoser, A. Batär, R. Löw, V. Schweikhard, A. Grabowski, Yu. B. Ovchinnikov, and T. Pfau, Phys. Rev. A 66, 023410 (2002).
[CrossRef]

Berthoud, P.

P. Berthoud, A. Joyet, G. Dudle, N. Sagna, and P. Thomann, Europhys. Lett. 41, 141 (1998).
[CrossRef]

Cable, A.

E. Raab, M. Prentiss, A. Cable, S. Chu, and D. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).
[CrossRef] [PubMed]

Chu, S.

E. Raab, M. Prentiss, A. Cable, S. Chu, and D. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).
[CrossRef] [PubMed]

Cornell, E. A.

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331 (1996).
[CrossRef] [PubMed]

Corwin, K. L.

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331 (1996).
[CrossRef] [PubMed]

Dieckmann, K.

K. Dieckmann, R. J. C. Spreeuw, M. Weidemüller, and J. T. M. Walraven, Phys. Rev. A 58, 3891 (1998).
[CrossRef]

Dimarcq, N.

S. Weyers, E. Aucouturier, C. Valentin, and N. Dimarcq, Opt. Commun. 143, 30 (1997).
[CrossRef]

Dudle, G.

P. Berthoud, A. Joyet, G. Dudle, N. Sagna, and P. Thomann, Europhys. Lett. 41, 141 (1998).
[CrossRef]

Gerton, J. M.

B. Ghaffari, J. M. Gerton, W. I. McAlexander, K. E. Strecker, D. M. Homan, and R. G. Hulet, Phys. Rev. A 60, 3878 (1999).
[CrossRef]

Ghaffari, B.

B. Ghaffari, J. M. Gerton, W. I. McAlexander, K. E. Strecker, D. M. Homan, and R. G. Hulet, Phys. Rev. A 60, 3878 (1999).
[CrossRef]

Grabowski, A.

J. Schoser, A. Batär, R. Löw, V. Schweikhard, A. Grabowski, Yu. B. Ovchinnikov, and T. Pfau, Phys. Rev. A 66, 023410 (2002).
[CrossRef]

Homan, D. M.

B. Ghaffari, J. M. Gerton, W. I. McAlexander, K. E. Strecker, D. M. Homan, and R. G. Hulet, Phys. Rev. A 60, 3878 (1999).
[CrossRef]

Hulet, R. G.

B. Ghaffari, J. M. Gerton, W. I. McAlexander, K. E. Strecker, D. M. Homan, and R. G. Hulet, Phys. Rev. A 60, 3878 (1999).
[CrossRef]

Joyet, A.

P. Berthoud, A. Joyet, G. Dudle, N. Sagna, and P. Thomann, Europhys. Lett. 41, 141 (1998).
[CrossRef]

Löw, R.

J. Schoser, A. Batär, R. Löw, V. Schweikhard, A. Grabowski, Yu. B. Ovchinnikov, and T. Pfau, Phys. Rev. A 66, 023410 (2002).
[CrossRef]

Lu, Z. T.

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331 (1996).
[CrossRef] [PubMed]

McAlexander, W. I.

B. Ghaffari, J. M. Gerton, W. I. McAlexander, K. E. Strecker, D. M. Homan, and R. G. Hulet, Phys. Rev. A 60, 3878 (1999).
[CrossRef]

Metcalf, H.

W. D. Phillips and H. Metcalf, Phys. Rev. Lett. 48, 596 (1982).
[CrossRef]

Ovchinnikov, Yu. B.

J. Schoser, A. Batär, R. Löw, V. Schweikhard, A. Grabowski, Yu. B. Ovchinnikov, and T. Pfau, Phys. Rev. A 66, 023410 (2002).
[CrossRef]

Pfau, T.

J. Schoser, A. Batär, R. Löw, V. Schweikhard, A. Grabowski, Yu. B. Ovchinnikov, and T. Pfau, Phys. Rev. A 66, 023410 (2002).
[CrossRef]

Phillips, W. D.

W. D. Phillips and H. Metcalf, Phys. Rev. Lett. 48, 596 (1982).
[CrossRef]

Prentiss, M.

E. Raab, M. Prentiss, A. Cable, S. Chu, and D. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).
[CrossRef] [PubMed]

Pritchard, D.

E. Raab, M. Prentiss, A. Cable, S. Chu, and D. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).
[CrossRef] [PubMed]

Raab, E.

E. Raab, M. Prentiss, A. Cable, S. Chu, and D. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).
[CrossRef] [PubMed]

Renn, M. J.

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331 (1996).
[CrossRef] [PubMed]

Sagna, N.

P. Berthoud, A. Joyet, G. Dudle, N. Sagna, and P. Thomann, Europhys. Lett. 41, 141 (1998).
[CrossRef]

Schoser, J.

J. Schoser, A. Batär, R. Löw, V. Schweikhard, A. Grabowski, Yu. B. Ovchinnikov, and T. Pfau, Phys. Rev. A 66, 023410 (2002).
[CrossRef]

Schweikhard, V.

J. Schoser, A. Batär, R. Löw, V. Schweikhard, A. Grabowski, Yu. B. Ovchinnikov, and T. Pfau, Phys. Rev. A 66, 023410 (2002).
[CrossRef]

Spreeuw, R. J. C.

K. Dieckmann, R. J. C. Spreeuw, M. Weidemüller, and J. T. M. Walraven, Phys. Rev. A 58, 3891 (1998).
[CrossRef]

Strecker, K. E.

B. Ghaffari, J. M. Gerton, W. I. McAlexander, K. E. Strecker, D. M. Homan, and R. G. Hulet, Phys. Rev. A 60, 3878 (1999).
[CrossRef]

Thomann, P.

P. Berthoud, A. Joyet, G. Dudle, N. Sagna, and P. Thomann, Europhys. Lett. 41, 141 (1998).
[CrossRef]

Valentin, C.

S. Weyers, E. Aucouturier, C. Valentin, and N. Dimarcq, Opt. Commun. 143, 30 (1997).
[CrossRef]

Walraven, J. T. M.

K. Dieckmann, R. J. C. Spreeuw, M. Weidemüller, and J. T. M. Walraven, Phys. Rev. A 58, 3891 (1998).
[CrossRef]

Weidemüller, M.

K. Dieckmann, R. J. C. Spreeuw, M. Weidemüller, and J. T. M. Walraven, Phys. Rev. A 58, 3891 (1998).
[CrossRef]

Weyers, S.

S. Weyers, E. Aucouturier, C. Valentin, and N. Dimarcq, Opt. Commun. 143, 30 (1997).
[CrossRef]

Wieman, C. E.

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331 (1996).
[CrossRef] [PubMed]

Europhys. Lett. (1)

P. Berthoud, A. Joyet, G. Dudle, N. Sagna, and P. Thomann, Europhys. Lett. 41, 141 (1998).
[CrossRef]

Opt. Commun. (1)

S. Weyers, E. Aucouturier, C. Valentin, and N. Dimarcq, Opt. Commun. 143, 30 (1997).
[CrossRef]

Phys. Rev. A (3)

K. Dieckmann, R. J. C. Spreeuw, M. Weidemüller, and J. T. M. Walraven, Phys. Rev. A 58, 3891 (1998).
[CrossRef]

B. Ghaffari, J. M. Gerton, W. I. McAlexander, K. E. Strecker, D. M. Homan, and R. G. Hulet, Phys. Rev. A 60, 3878 (1999).
[CrossRef]

J. Schoser, A. Batär, R. Löw, V. Schweikhard, A. Grabowski, Yu. B. Ovchinnikov, and T. Pfau, Phys. Rev. A 66, 023410 (2002).
[CrossRef]

Phys. Rev. Lett. (3)

E. Raab, M. Prentiss, A. Cable, S. Chu, and D. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).
[CrossRef] [PubMed]

W. D. Phillips and H. Metcalf, Phys. Rev. Lett. 48, 596 (1982).
[CrossRef]

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331 (1996).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic illustration of the experimental setup consisting of a five-stage 2D MOT source and a UHV MOT (not to scale). The 2D MOT laser beams are collimated from optical fibers. The cold atom beam exits the 2D MOT from the left through the differential pumping tubing and is captured in the UHV MOT. The retroreflecting optics are not shown for clarity. The optics for a conventional 2D MOT of similar length are also illustrated for comparison.

Fig. 2
Fig. 2

UHV MOT loading rate as a function of the laser intensity in the 2D MOT for the single-stage (circles), adjacent two-stage (diamonds), and three-stage (squares) 2D MOT sources.

Fig. 3
Fig. 3

Velocity profiles of the atomic beam from a single-stage MOT [curve (c)], two-stage MOT without separation [curve (a)], and a two-stage MOT with 13 mm separation [curve (b)]. The profile shift to the higher velocity in the two-stage MOT [curve (a)] indicates the combined capturing process in the multistage MOT. This effect diminishes as the separation of the two regions becomes large [curve (b)]. The inset shows the atom loading rate as a function of the spacing between the trap regions in a two-stage 2D MOT at vapor pressures of 1.5 × 10 7   Torr (open circles) and 1.2 × 10 6   Torr (filled circles).

Fig. 4
Fig. 4

Dependence of the UHV MOT loading rate on cesium vapor cell pressure for the 12 mm single-stage (circles), 24 mm two-stage (diamonds), and 32 mm long elliptical (squares) 2D MOT sources.

Metrics