Abstract

We present a C-aperture encircled by a groove that makes possible the hybrid effect of coupling surface plasmon resonance to propagating waves. Compared to a single C aperture, the groove-encircled aperture can increase transmission by a factor of 2.45 in the near field and by a factor of 1.88 in the far field, showing good agreement with our theoretical calculation.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Novotny and C. Hafner, Phys. Rev. E 50, 4094 (1994).
    [CrossRef]
  2. X. Shi, L. Hesselink, and R. L. Thornton, Opt. Lett. 28, 1320 (2003).
    [CrossRef] [PubMed]
  3. J.-Y. Fang, W.-T. Lin, C.-H. Tien, Y. Chiu, and H.-P. D. Shieh, in Proceedings of the International Symposium on Optical Memory (2004), pp. 220-221.
  4. K. Tanaka and M. Tanaka, Opt. Commun. 233, 231 (2004).
    [CrossRef]
  5. E. X. Jin and X. Xu, Jpn. J. Appl. Phys. Part 1 43, 407 (2004).
    [CrossRef]
  6. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, Opt. Lett. 26, 1972 (2001).
    [CrossRef]
  7. A. Agrawal, H. Cao, and A. Nahata, Opt. Express 13, 3535 (2005).
    [CrossRef] [PubMed]
  8. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, Phys. Rev. Lett. 92, 107401 (2004).
    [CrossRef] [PubMed]
  9. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Vol. 111 of Springer Tracts in Modern Physics (Springer, 1988).

2005 (1)

2004 (3)

K. Tanaka and M. Tanaka, Opt. Commun. 233, 231 (2004).
[CrossRef]

E. X. Jin and X. Xu, Jpn. J. Appl. Phys. Part 1 43, 407 (2004).
[CrossRef]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

2003 (1)

2001 (1)

1994 (1)

L. Novotny and C. Hafner, Phys. Rev. E 50, 4094 (1994).
[CrossRef]

Agrawal, A.

Barnes, W. L.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Cao, H.

Chiu, Y.

J.-Y. Fang, W.-T. Lin, C.-H. Tien, Y. Chiu, and H.-P. D. Shieh, in Proceedings of the International Symposium on Optical Memory (2004), pp. 220-221.

Devaux, E.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Dintinger, J.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, Opt. Lett. 26, 1972 (2001).
[CrossRef]

Fang, J.-Y.

J.-Y. Fang, W.-T. Lin, C.-H. Tien, Y. Chiu, and H.-P. D. Shieh, in Proceedings of the International Symposium on Optical Memory (2004), pp. 220-221.

Hafner, C.

L. Novotny and C. Hafner, Phys. Rev. E 50, 4094 (1994).
[CrossRef]

Hesselink, L.

Jin, E. X.

E. X. Jin and X. Xu, Jpn. J. Appl. Phys. Part 1 43, 407 (2004).
[CrossRef]

Lezec, H. J.

Lin, W.-T.

J.-Y. Fang, W.-T. Lin, C.-H. Tien, Y. Chiu, and H.-P. D. Shieh, in Proceedings of the International Symposium on Optical Memory (2004), pp. 220-221.

Linke, R. A.

Murray, W. A.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Nahata, A.

Novotny, L.

L. Novotny and C. Hafner, Phys. Rev. E 50, 4094 (1994).
[CrossRef]

Pellerin, K. M.

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Vol. 111 of Springer Tracts in Modern Physics (Springer, 1988).

Shi, X.

Shieh, H.-P. D.

J.-Y. Fang, W.-T. Lin, C.-H. Tien, Y. Chiu, and H.-P. D. Shieh, in Proceedings of the International Symposium on Optical Memory (2004), pp. 220-221.

Tanaka, K.

K. Tanaka and M. Tanaka, Opt. Commun. 233, 231 (2004).
[CrossRef]

Tanaka, M.

K. Tanaka and M. Tanaka, Opt. Commun. 233, 231 (2004).
[CrossRef]

Thio, T.

Thornton, R. L.

Tien, C.-H.

J.-Y. Fang, W.-T. Lin, C.-H. Tien, Y. Chiu, and H.-P. D. Shieh, in Proceedings of the International Symposium on Optical Memory (2004), pp. 220-221.

Xu, X.

E. X. Jin and X. Xu, Jpn. J. Appl. Phys. Part 1 43, 407 (2004).
[CrossRef]

Jpn. J. Appl. Phys. Part 1 (1)

E. X. Jin and X. Xu, Jpn. J. Appl. Phys. Part 1 43, 407 (2004).
[CrossRef]

Opt. Commun. (1)

K. Tanaka and M. Tanaka, Opt. Commun. 233, 231 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. E (1)

L. Novotny and C. Hafner, Phys. Rev. E 50, 4094 (1994).
[CrossRef]

Phys. Rev. Lett. (1)

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Other (2)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Vol. 111 of Springer Tracts in Modern Physics (Springer, 1988).

J.-Y. Fang, W.-T. Lin, C.-H. Tien, Y. Chiu, and H.-P. D. Shieh, in Proceedings of the International Symposium on Optical Memory (2004), pp. 220-221.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(Color online) PT of the C-aperture as functions of gap g and ridge length c. The highest PT is 1.77, corresponding to the gap and ridge length of 38 and 86 nm .

Fig. 2
Fig. 2

Transmitted power dissipation of a 60 nm circular aperture (magnified by 10 4 ) and a C-aperture as a function of the propagating distance from apertures.

Fig. 3
Fig. 3

(Color online) PT of the single–groove-encircled circular–C-shaped apertures as a function of incident wavelength, groove pitch, width, and depth of 660, 240, and 50 nm . The diameter of the circular aperture is 80 nm , and the C-aperture dimensions are optimized as (a, b, c, g) of ( 210 , 84 , 86 , 38 ) nm .

Fig. 4
Fig. 4

(Color online) Profiles of electric field intensity ( E 2 ) at 50 nm from the single C-aperture and the groove-encircled C-aperture along the x and y directions. Given identical aperture dimensions, the line shape of the groove-encircled C-aperture exhibits a higher peak value without being broadened in comparison with that of the single C-aperture.

Fig. 5
Fig. 5

SEM photos of (a) circular aperture, (b) single C-aperture, and (c) groove-encircled C-aperture.

Fig. 6
Fig. 6

(Color online) Near-field distribution scanned by NSOM of (a) a single C-aperture, where an optical spot with voltage signal 2.75 V was obtained, and (b) a groove-encircled C-aperture, where the optical spot corresponding to a higher voltage signal of 6.75 V was derived.

Metrics