Abstract

A novel method for the generation of high-energy ultrashort optical pulses is described and studied theoretically and numerically. Through the combination of parametric amplification and enhancement cavities, this method opens a route to generate few-cycle pulses at unprecedented average power levels through the use of a low-energy, high average-power pump source and energy storage in the enhancement cavity. Dispersion in the enhancement cavity ceases to be a concern with the use of long pump pulses. Limitations set by the Kerr nonlinearity of the amplifier crystal are analyzed, and ways to overcome them using self-defocusing nonlinearities are discussed.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Dubietis, G. Jonusauskas, and A. Piskarskas, Opt. Commun. 88, 433 (1992).
    [CrossRef]
  2. T. Kobayashi and A. Baltuska, Meas. Sci. Technol. 13, 1671 (2002).
    [CrossRef]
  3. R. Jones and J. Ye, Opt. Lett. 27, 1848 (2002).
    [CrossRef]
  4. E. O. Potma, C. Evans, X. S. Xie, R. J. Jones, and J. Ye, Opt. Lett. 28, 1835 (2003).
    [CrossRef] [PubMed]
  5. B. Couillaud, T. W. Hansch, and S. G. Maclean, Opt. Commun. 50, 127 (1984).
    [CrossRef]
  6. V. Yanovsky and F. W. Wise, Opt. Lett. 19, 1952 (1994).
    [CrossRef] [PubMed]
  7. K. D. Moll, R. J. Jones, and J. Ye, Opt. Express 13, 1672 (2005).
    [CrossRef] [PubMed]
  8. J. Limpert, T. Clausnitzer, A. Liem, T. Schreiber, H.-J. Fuchs, H. Zellmer, E.-B. Kley, and A. Tuennermann, Opt. Lett. 28, 1984 (2003).
    [CrossRef] [PubMed]
  9. F. O. Ilday and F. W. Wise, J. Opt. Soc. Am. B 19, 470 (2002).
    [CrossRef]
  10. M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, Phys. Rev. Lett. 65, 96 (1990).
    [CrossRef] [PubMed]
  11. R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, Opt. Lett. 17, 28 (1992).
    [CrossRef] [PubMed]
  12. F. Wise, L. Qian, and X. Liu, J. Nonlinear Opt. Phys. Mater. 11, 317 (2002).
    [CrossRef]
  13. K. Beckwitt, F. W. Wise, L. Qian, L. A. Walker II, and E. Canto-Said, Opt. Lett. 26, 1696 (2001).
    [CrossRef]

2005

2003

2002

F. O. Ilday and F. W. Wise, J. Opt. Soc. Am. B 19, 470 (2002).
[CrossRef]

R. Jones and J. Ye, Opt. Lett. 27, 1848 (2002).
[CrossRef]

T. Kobayashi and A. Baltuska, Meas. Sci. Technol. 13, 1671 (2002).
[CrossRef]

F. Wise, L. Qian, and X. Liu, J. Nonlinear Opt. Phys. Mater. 11, 317 (2002).
[CrossRef]

2001

1994

1992

1990

M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, Phys. Rev. Lett. 65, 96 (1990).
[CrossRef] [PubMed]

1984

B. Couillaud, T. W. Hansch, and S. G. Maclean, Opt. Commun. 50, 127 (1984).
[CrossRef]

Baltuska, A.

T. Kobayashi and A. Baltuska, Meas. Sci. Technol. 13, 1671 (2002).
[CrossRef]

Beckwitt, K.

Canto-Said, E.

Clausnitzer, T.

Couillaud, B.

B. Couillaud, T. W. Hansch, and S. G. Maclean, Opt. Commun. 50, 127 (1984).
[CrossRef]

DeSalvo, R.

Dubietis, A.

A. Dubietis, G. Jonusauskas, and A. Piskarskas, Opt. Commun. 88, 433 (1992).
[CrossRef]

Evans, C.

Fuchs, H.-J.

Hagan, D. J.

Hansch, T. W.

B. Couillaud, T. W. Hansch, and S. G. Maclean, Opt. Commun. 50, 127 (1984).
[CrossRef]

Ilday, F. O.

Jones, R.

Jones, R. J.

Jonusauskas, G.

A. Dubietis, G. Jonusauskas, and A. Piskarskas, Opt. Commun. 88, 433 (1992).
[CrossRef]

Kley, E.-B.

Kobayashi, T.

T. Kobayashi and A. Baltuska, Meas. Sci. Technol. 13, 1671 (2002).
[CrossRef]

Liem, A.

Limpert, J.

Liu, X.

F. Wise, L. Qian, and X. Liu, J. Nonlinear Opt. Phys. Mater. 11, 317 (2002).
[CrossRef]

Maclean, S. G.

B. Couillaud, T. W. Hansch, and S. G. Maclean, Opt. Commun. 50, 127 (1984).
[CrossRef]

Moll, K. D.

Piskarskas, A.

A. Dubietis, G. Jonusauskas, and A. Piskarskas, Opt. Commun. 88, 433 (1992).
[CrossRef]

Potma, E. O.

Qian, L.

Schreiber, T.

Sheik-Bahae, M.

Stegeman, G.

Tuennermann, A.

Van Stryland, E. W.

Vanherzeele, H.

Walker, L. A.

Wise, F.

F. Wise, L. Qian, and X. Liu, J. Nonlinear Opt. Phys. Mater. 11, 317 (2002).
[CrossRef]

Wise, F. W.

Xie, X. S.

Yanovsky, V.

Ye, J.

Zellmer, H.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(Color online) Schematic of the cavity-enhanced OPCPA. Nonlinear crystal 1 and (optional) nonlinear crystal 2 are for parametric amplification and nonlinearity management, respectively.

Fig. 2
Fig. 2

(Color online) Results of numerical simulations: (a) Loading of the cavity with and without nonlinearity compensation. The solid (dashed) curves depict intracavity energy (peak-power) enhancement. (b) Intracavity buildup factor as a function of the peak power of the pump pulses with and without compensation of the nonlinearity. The lines connecting the dots are only a guide to the eye. (c) Oscillatorlike behavior of the passive cavity under pumping with a continuous train of pulses and periodic unloading. The solid (dashed) curves depict intracavity energy (peak-power) enhancement.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n 2 eff = 4 π c ϵ o 1 λ d eff 2 n 2 ω n ω 2 1 Δ k .

Metrics