Abstract

We report the generation of shaped tunable ultrashort ultraviolet pulses with full control over the spectral phase and amplitude. The output of a noncollinearly phase-matched optical parametric amplifier is shaped in phase and amplitude by a liquid-crystal spatial light modulator. The resulting structured visible pulses are transferred into the ultraviolet by sum-frequency mixing with strongly chirped 775nm pulses. Single, double, and triple pulses at 344nm with subpulses as short as 19fs are explicitly demonstrated. The method can easily be adapted to arbitrarily shaped pulses throughout the 295370nm range.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, Science 288, 824 (2000).
    [CrossRef] [PubMed]
  2. A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
    [CrossRef]
  3. M. Hacker, R. Netz, M. Roth, G. Stobrawa, T. Feurer, and R. Sauerbrey, Appl. Phys. B 73, 273 (2001).
  4. M. Hacker, T. Feurer, R. Sauerbrey, T. Lucza, and G. Szabo, J. Opt. Soc. Am. B 18, 866 (2001).
    [CrossRef]
  5. H. Wang and A. M. Weiner, IEEE J. Quantum Electron. 40, 937 (2004).
    [CrossRef]
  6. M. Roth, M. Mehendale, A. Bartelt, and H. Rabitz, Appl. Phys. B 80, 441 (2005).
    [CrossRef]
  7. M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, Appl. Phys. B 76, 711 (2003).
  8. I. Z. Kozma, P. Baum, S. Lochbrunner, and E. Riedle, Opt. Express 11, 3110 (2003).
    [CrossRef] [PubMed]
  9. I. Walmsley, L. Waxer, and C. Dorrer, Rev. Sci. Instrum. 72, 1 (2001).
    [CrossRef]
  10. P. Baum, S. Lochbrunner, and E. Riedle, Appl. Phys. B 79, 1027 (2004).
    [CrossRef]
  11. E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, Appl. Phys. B 71, 457 (2000).

2005

M. Roth, M. Mehendale, A. Bartelt, and H. Rabitz, Appl. Phys. B 80, 441 (2005).
[CrossRef]

2004

P. Baum, S. Lochbrunner, and E. Riedle, Appl. Phys. B 79, 1027 (2004).
[CrossRef]

H. Wang and A. M. Weiner, IEEE J. Quantum Electron. 40, 937 (2004).
[CrossRef]

2003

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, Appl. Phys. B 76, 711 (2003).

I. Z. Kozma, P. Baum, S. Lochbrunner, and E. Riedle, Opt. Express 11, 3110 (2003).
[CrossRef] [PubMed]

2001

I. Walmsley, L. Waxer, and C. Dorrer, Rev. Sci. Instrum. 72, 1 (2001).
[CrossRef]

M. Hacker, R. Netz, M. Roth, G. Stobrawa, T. Feurer, and R. Sauerbrey, Appl. Phys. B 73, 273 (2001).

M. Hacker, T. Feurer, R. Sauerbrey, T. Lucza, and G. Szabo, J. Opt. Soc. Am. B 18, 866 (2001).
[CrossRef]

2000

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, Science 288, 824 (2000).
[CrossRef] [PubMed]

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, Appl. Phys. B 71, 457 (2000).

Bartelt, A.

M. Roth, M. Mehendale, A. Bartelt, and H. Rabitz, Appl. Phys. B 80, 441 (2005).
[CrossRef]

Baum, P.

Beutter, M.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, Appl. Phys. B 71, 457 (2000).

Buckup, T.

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, Appl. Phys. B 76, 711 (2003).

de Vivie-Riedle, R.

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, Science 288, 824 (2000).
[CrossRef] [PubMed]

Dorrer, C.

I. Walmsley, L. Waxer, and C. Dorrer, Rev. Sci. Instrum. 72, 1 (2001).
[CrossRef]

Feurer, T.

M. Hacker, R. Netz, M. Roth, G. Stobrawa, T. Feurer, and R. Sauerbrey, Appl. Phys. B 73, 273 (2001).

M. Hacker, T. Feurer, R. Sauerbrey, T. Lucza, and G. Szabo, J. Opt. Soc. Am. B 18, 866 (2001).
[CrossRef]

Gehner, A.

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, Appl. Phys. B 76, 711 (2003).

Hacker, M.

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, Appl. Phys. B 76, 711 (2003).

M. Hacker, T. Feurer, R. Sauerbrey, T. Lucza, and G. Szabo, J. Opt. Soc. Am. B 18, 866 (2001).
[CrossRef]

M. Hacker, R. Netz, M. Roth, G. Stobrawa, T. Feurer, and R. Sauerbrey, Appl. Phys. B 73, 273 (2001).

Kompa, K.

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, Science 288, 824 (2000).
[CrossRef] [PubMed]

Kozma, I. Z.

Lochbrunner, S.

P. Baum, S. Lochbrunner, and E. Riedle, Appl. Phys. B 79, 1027 (2004).
[CrossRef]

I. Z. Kozma, P. Baum, S. Lochbrunner, and E. Riedle, Opt. Express 11, 3110 (2003).
[CrossRef] [PubMed]

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, Appl. Phys. B 71, 457 (2000).

Lucza, T.

Mehendale, M.

M. Roth, M. Mehendale, A. Bartelt, and H. Rabitz, Appl. Phys. B 80, 441 (2005).
[CrossRef]

Motzkus, M.

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, Appl. Phys. B 76, 711 (2003).

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, Science 288, 824 (2000).
[CrossRef] [PubMed]

Netz, R.

M. Hacker, R. Netz, M. Roth, G. Stobrawa, T. Feurer, and R. Sauerbrey, Appl. Phys. B 73, 273 (2001).

Piel, J.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, Appl. Phys. B 71, 457 (2000).

Rabitz, H.

M. Roth, M. Mehendale, A. Bartelt, and H. Rabitz, Appl. Phys. B 80, 441 (2005).
[CrossRef]

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, Science 288, 824 (2000).
[CrossRef] [PubMed]

Riedle, E.

P. Baum, S. Lochbrunner, and E. Riedle, Appl. Phys. B 79, 1027 (2004).
[CrossRef]

I. Z. Kozma, P. Baum, S. Lochbrunner, and E. Riedle, Opt. Express 11, 3110 (2003).
[CrossRef] [PubMed]

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, Appl. Phys. B 71, 457 (2000).

Roth, M.

M. Roth, M. Mehendale, A. Bartelt, and H. Rabitz, Appl. Phys. B 80, 441 (2005).
[CrossRef]

M. Hacker, R. Netz, M. Roth, G. Stobrawa, T. Feurer, and R. Sauerbrey, Appl. Phys. B 73, 273 (2001).

Sauerbrey, R.

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, Appl. Phys. B 76, 711 (2003).

M. Hacker, R. Netz, M. Roth, G. Stobrawa, T. Feurer, and R. Sauerbrey, Appl. Phys. B 73, 273 (2001).

M. Hacker, T. Feurer, R. Sauerbrey, T. Lucza, and G. Szabo, J. Opt. Soc. Am. B 18, 866 (2001).
[CrossRef]

Schenkl, S.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, Appl. Phys. B 71, 457 (2000).

Spörlein, S.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, Appl. Phys. B 71, 457 (2000).

Stobrawa, G.

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, Appl. Phys. B 76, 711 (2003).

M. Hacker, R. Netz, M. Roth, G. Stobrawa, T. Feurer, and R. Sauerbrey, Appl. Phys. B 73, 273 (2001).

Szabo, G.

Walmsley, I.

I. Walmsley, L. Waxer, and C. Dorrer, Rev. Sci. Instrum. 72, 1 (2001).
[CrossRef]

Wang, H.

H. Wang and A. M. Weiner, IEEE J. Quantum Electron. 40, 937 (2004).
[CrossRef]

Waxer, L.

I. Walmsley, L. Waxer, and C. Dorrer, Rev. Sci. Instrum. 72, 1 (2001).
[CrossRef]

Weiner, A. M.

H. Wang and A. M. Weiner, IEEE J. Quantum Electron. 40, 937 (2004).
[CrossRef]

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

Wildenhain, M.

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, Appl. Phys. B 76, 711 (2003).

Zinth, W.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, Appl. Phys. B 71, 457 (2000).

Appl. Phys. B

M. Hacker, R. Netz, M. Roth, G. Stobrawa, T. Feurer, and R. Sauerbrey, Appl. Phys. B 73, 273 (2001).

M. Roth, M. Mehendale, A. Bartelt, and H. Rabitz, Appl. Phys. B 80, 441 (2005).
[CrossRef]

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, Appl. Phys. B 76, 711 (2003).

P. Baum, S. Lochbrunner, and E. Riedle, Appl. Phys. B 79, 1027 (2004).
[CrossRef]

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, Appl. Phys. B 71, 457 (2000).

IEEE J. Quantum Electron.

H. Wang and A. M. Weiner, IEEE J. Quantum Electron. 40, 937 (2004).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Rev. Sci. Instrum.

I. Walmsley, L. Waxer, and C. Dorrer, Rev. Sci. Instrum. 72, 1 (2001).
[CrossRef]

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

Science

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, Science 288, 824 (2000).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Setup for the generation and characterization of shaped tunable UV pulses.

Fig. 2
Fig. 2

(a) Spectrum of the visible pulse after the pulse shaper, with every tenth pixel set to zero transmission. UV spectra generated by SFM of this spectrum in (b) a 100 μ m thick and (c) a 25 μ m thick BBO crystal.

Fig. 3
Fig. 3

(a) Autocorrelation and (b) spectrum of a NOPA pulse optimally compressed with the pulse shaper. (c) Cross correlation and (d) spectrum of a UV pulse with optimized precompression.

Fig. 4
Fig. 4

Cross correlations of UV (a) double and (b) triple pulses at a center wavelength of 344 nm ( 872 THz ) for various pulse separations Δ t .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E NIR ( ω ) exp [ ( ω ω NIR ) 2 2 σ 2 + i D 2 2 ( ω ω NIR ) 2 ] .
E NIR ( t ) A NIR ( t ) exp ( i t 2 2 D 2 ) exp ( i t ω NIR ) ,
E UV ( t ) A VIS ( t ) A NIR ( t ) exp [ i ϕ VIS ( t ) i t 2 2 D 2 ] exp [ i t ( ω VIS + ω NIR ) ] ,
H n ( ω ) = N p = ( n 1 ) 2 ( n 1 ) 2 exp ( i p Δ t ω ) ,

Metrics