Abstract

Time magnification and heterodyning are combined to allow single-shot characterization of the electric field of optical waveforms. The electric field of the source under test is obtained by Fourier processing of the magnified temporal intensity of the source heterodyned with a monochromatic source. An experimental implementation of this technique is characterized and used to measure various optical signals.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Tournois, J.-L. Vernet, and G. Bienvenu, C. R. Hebd. Seances Acad. Sci. 267, 375 (1968).
  2. W. J. Caputi, IEEE Trans. Aerosp. Electron. Syst. AES-7, 269 (1971).
    [CrossRef]
  3. B. H. Kolner, IEEE J. Quantum Electron. 30, 1951 (1994).
    [CrossRef]
  4. J. A. Valdmanis, in Ultrafast Phenomena V, G.R.Fleming and A.E.Siegman, eds. (Springer-Verlag, 1986), p. 82.
  5. C. V. Bennet, E. P. Scott, and B. H. Kolner, Appl. Phys. Lett. 65, 2515 (1994).
  6. F. G. Sun, Z. Jiang, and X.-C. Zhang, Appl. Phys. Lett. 73, 2233 (1998).
    [CrossRef]
  7. L. Kh. Mouradian, F. Louradour, V. Messager, A. Barthélémy, and C. Froehly, IEEE J. Quantum Electron. 36, 795 (2000).
    [CrossRef]
  8. A. S. Bhushan, P. V. Kelkar, B. Jalali, O. Boyraz, and M. Islam, IEEE Photon. Technol. Lett. 14, 684 (2002).
    [CrossRef]
  9. M. Westlund, P. A. Andrekson, M. Sunnerud, J. Hansryd. and J. Li, J. Lightwave Technol. 23, 2012 (2004).
    [CrossRef]

2004 (1)

2002 (1)

A. S. Bhushan, P. V. Kelkar, B. Jalali, O. Boyraz, and M. Islam, IEEE Photon. Technol. Lett. 14, 684 (2002).
[CrossRef]

2000 (1)

L. Kh. Mouradian, F. Louradour, V. Messager, A. Barthélémy, and C. Froehly, IEEE J. Quantum Electron. 36, 795 (2000).
[CrossRef]

1998 (1)

F. G. Sun, Z. Jiang, and X.-C. Zhang, Appl. Phys. Lett. 73, 2233 (1998).
[CrossRef]

1994 (2)

C. V. Bennet, E. P. Scott, and B. H. Kolner, Appl. Phys. Lett. 65, 2515 (1994).

B. H. Kolner, IEEE J. Quantum Electron. 30, 1951 (1994).
[CrossRef]

1986 (1)

J. A. Valdmanis, in Ultrafast Phenomena V, G.R.Fleming and A.E.Siegman, eds. (Springer-Verlag, 1986), p. 82.

1971 (1)

W. J. Caputi, IEEE Trans. Aerosp. Electron. Syst. AES-7, 269 (1971).
[CrossRef]

1968 (1)

P. Tournois, J.-L. Vernet, and G. Bienvenu, C. R. Hebd. Seances Acad. Sci. 267, 375 (1968).

Andrekson, P. A.

Barthélémy, A.

L. Kh. Mouradian, F. Louradour, V. Messager, A. Barthélémy, and C. Froehly, IEEE J. Quantum Electron. 36, 795 (2000).
[CrossRef]

Bennet, C. V.

C. V. Bennet, E. P. Scott, and B. H. Kolner, Appl. Phys. Lett. 65, 2515 (1994).

Bhushan, A. S.

A. S. Bhushan, P. V. Kelkar, B. Jalali, O. Boyraz, and M. Islam, IEEE Photon. Technol. Lett. 14, 684 (2002).
[CrossRef]

Bienvenu, G.

P. Tournois, J.-L. Vernet, and G. Bienvenu, C. R. Hebd. Seances Acad. Sci. 267, 375 (1968).

Boyraz, O.

A. S. Bhushan, P. V. Kelkar, B. Jalali, O. Boyraz, and M. Islam, IEEE Photon. Technol. Lett. 14, 684 (2002).
[CrossRef]

Caputi, W. J.

W. J. Caputi, IEEE Trans. Aerosp. Electron. Syst. AES-7, 269 (1971).
[CrossRef]

Froehly, C.

L. Kh. Mouradian, F. Louradour, V. Messager, A. Barthélémy, and C. Froehly, IEEE J. Quantum Electron. 36, 795 (2000).
[CrossRef]

Hansryd, J.

Islam, M.

A. S. Bhushan, P. V. Kelkar, B. Jalali, O. Boyraz, and M. Islam, IEEE Photon. Technol. Lett. 14, 684 (2002).
[CrossRef]

Jalali, B.

A. S. Bhushan, P. V. Kelkar, B. Jalali, O. Boyraz, and M. Islam, IEEE Photon. Technol. Lett. 14, 684 (2002).
[CrossRef]

Jiang, Z.

F. G. Sun, Z. Jiang, and X.-C. Zhang, Appl. Phys. Lett. 73, 2233 (1998).
[CrossRef]

Kelkar, P. V.

A. S. Bhushan, P. V. Kelkar, B. Jalali, O. Boyraz, and M. Islam, IEEE Photon. Technol. Lett. 14, 684 (2002).
[CrossRef]

Kolner, B. H.

C. V. Bennet, E. P. Scott, and B. H. Kolner, Appl. Phys. Lett. 65, 2515 (1994).

B. H. Kolner, IEEE J. Quantum Electron. 30, 1951 (1994).
[CrossRef]

Li, J.

Louradour, F.

L. Kh. Mouradian, F. Louradour, V. Messager, A. Barthélémy, and C. Froehly, IEEE J. Quantum Electron. 36, 795 (2000).
[CrossRef]

Messager, V.

L. Kh. Mouradian, F. Louradour, V. Messager, A. Barthélémy, and C. Froehly, IEEE J. Quantum Electron. 36, 795 (2000).
[CrossRef]

Mouradian, L. Kh.

L. Kh. Mouradian, F. Louradour, V. Messager, A. Barthélémy, and C. Froehly, IEEE J. Quantum Electron. 36, 795 (2000).
[CrossRef]

Scott, E. P.

C. V. Bennet, E. P. Scott, and B. H. Kolner, Appl. Phys. Lett. 65, 2515 (1994).

Sun, F. G.

F. G. Sun, Z. Jiang, and X.-C. Zhang, Appl. Phys. Lett. 73, 2233 (1998).
[CrossRef]

Sunnerud, M.

Tournois, P.

P. Tournois, J.-L. Vernet, and G. Bienvenu, C. R. Hebd. Seances Acad. Sci. 267, 375 (1968).

Valdmanis, J. A.

J. A. Valdmanis, in Ultrafast Phenomena V, G.R.Fleming and A.E.Siegman, eds. (Springer-Verlag, 1986), p. 82.

Vernet, J.-L.

P. Tournois, J.-L. Vernet, and G. Bienvenu, C. R. Hebd. Seances Acad. Sci. 267, 375 (1968).

Westlund, M.

Zhang, X.-C.

F. G. Sun, Z. Jiang, and X.-C. Zhang, Appl. Phys. Lett. 73, 2233 (1998).
[CrossRef]

Appl. Phys. Lett. (2)

C. V. Bennet, E. P. Scott, and B. H. Kolner, Appl. Phys. Lett. 65, 2515 (1994).

F. G. Sun, Z. Jiang, and X.-C. Zhang, Appl. Phys. Lett. 73, 2233 (1998).
[CrossRef]

C. R. Hebd. Seances Acad. Sci. (1)

P. Tournois, J.-L. Vernet, and G. Bienvenu, C. R. Hebd. Seances Acad. Sci. 267, 375 (1968).

IEEE J. Quantum Electron. (2)

B. H. Kolner, IEEE J. Quantum Electron. 30, 1951 (1994).
[CrossRef]

L. Kh. Mouradian, F. Louradour, V. Messager, A. Barthélémy, and C. Froehly, IEEE J. Quantum Electron. 36, 795 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. S. Bhushan, P. V. Kelkar, B. Jalali, O. Boyraz, and M. Islam, IEEE Photon. Technol. Lett. 14, 684 (2002).
[CrossRef]

IEEE Trans. Aerosp. Electron. Syst. (1)

W. J. Caputi, IEEE Trans. Aerosp. Electron. Syst. AES-7, 269 (1971).
[CrossRef]

J. Lightwave Technol. (1)

Other (1)

J. A. Valdmanis, in Ultrafast Phenomena V, G.R.Fleming and A.E.Siegman, eds. (Springer-Verlag, 1986), p. 82.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Setup for the single-shot measurement of the electric field of optical waveforms.

Fig. 2
Fig. 2

(a) Frequency (upper plot) and magnitude (lower plot) of the temporally magnified beating between two monochromatic lasers as a function of their frequency difference. Examples of waveforms measured at 11.2 and 42.9 GHz in a 20 ns time window are plotted as insets in the upper plot. The square and round markers in the lower plot correspond to optical powers of 4 and 1 mW for one of the lasers; the other is kept at 4 mW . (b) Amplitude of the beating between the two lasers as a function of the optical power of one of the lasers.

Fig. 3
Fig. 3

Temporally magnified phase of a monochromatic laser after modulation by a phase modulator driven by sinewaves with frequency equal to 5 GHz (solid curve), 10 GHz (long-dashed curve), and 15 GHz (short-dashed line).

Fig. 4
Fig. 4

Temporally magnified intensity of 10 Gbit s non-return-to-zero on–off keyed optical signals. The measured patterns are (a) 10101, (b) 11010, (c) 00001, and (d) 00101.

Fig. 5
Fig. 5

Temporally magnified phase of 10 Gbit s non-return-to-zero phase-shift keyed signals. The measured patterns are (a) π 0 π 0 π , (b) π π 000 , (c) π 0 π π 0 , and (d) π π 0 π π .

Metrics