Abstract

We present all-optical tuning and switching of a microcavity inside a two-dimensional photonic crystal waveguide. The photonic crystal structure is fabricated in silicon-on-insulator using complementary metal-oxide semiconductor processing techniques based on deep ultraviolet lithography and is completely buried in a silicon dioxide cladding that provides protection from the environment. By focusing a laser onto the microcavity region, both a thermal and a plasma dispersion effect are generated, allowing tuning and fast modulation of the in-plane transmission. By means of the temporal characteristics of the in-plane transmission, we experimentally identify a slower thermal and a fast plasma dispersion effect with modulation bandwidths of the order of several 100kHz and up to the gigahertz level, respectively.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. Villeneuve, and J. D. Joannopoulos, Phys. Rev. Lett. 77, 3787 (1996).
    [CrossRef] [PubMed]
  2. S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, IEEE J. Quantum Electron. 38, 726 (2002).
    [CrossRef]
  3. M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, Appl. Phys. Lett. 81, 2680 (2002).
    [CrossRef]
  4. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H.-Y. Ryu, Opt. Express 12, 1551 (2004).
    [CrossRef] [PubMed]
  5. E. A. Camargo, H. M. H. Chong, and R. M. De La Rue, Opt. Express 12, 588 (2004).
    [CrossRef] [PubMed]
  6. Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, Appl. Phys. Lett. 82, 2767 (2003).
    [CrossRef]
  7. S. W. Leonard, H. M. van Driel, J. Schilling, and R. B. Wehrsporn, Phys. Rev. B 66, 161102 (2002).
    [CrossRef]
  8. A. Locatelli, D. Modotto, D. Paloschi, and C. De Angelis, Opt. Commun. 237, 97 (2004).
    [CrossRef]
  9. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, Nature 425, 944 (2003).
    [CrossRef] [PubMed]
  10. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, Nature 31, 1081 (2004).
    [CrossRef]
  11. V. R. Almeida and M. Lipson, Opt. Lett. 29, 2387 (2004).
    [CrossRef] [PubMed]
  12. P. E. Barclay, K. Srinivasan, and O. Painter, Opt. Express 13, 801 (2005).
    [CrossRef] [PubMed]
  13. I. Märki, M. Salt, H. P. Herzig, R. Stanley, L. E. Melhaoui, P. Lyan, and J. M. Fedeli, J. Appl. Phys. 98, 013103 (2005).
    [CrossRef]
  14. G. Cocorullo and I. Rendina, Electron. Lett. 28, 83 (1992).
    [CrossRef]
  15. R. A. Soref and B. R. Bennet, IEEE J. Quantum Electron. QE-23, 123 (1987).
    [CrossRef]
  16. M. Lipson, Nanotechnology 15, 622 (2004).
    [CrossRef]
  17. V. R. Almeida and M. Lipson, Opt. Lett. 29, 2387 (2004).
    [CrossRef] [PubMed]

2005

I. Märki, M. Salt, H. P. Herzig, R. Stanley, L. E. Melhaoui, P. Lyan, and J. M. Fedeli, J. Appl. Phys. 98, 013103 (2005).
[CrossRef]

P. E. Barclay, K. Srinivasan, and O. Painter, Opt. Express 13, 801 (2005).
[CrossRef] [PubMed]

2004

2003

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, Nature 425, 944 (2003).
[CrossRef] [PubMed]

Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, Appl. Phys. Lett. 82, 2767 (2003).
[CrossRef]

2002

S. W. Leonard, H. M. van Driel, J. Schilling, and R. B. Wehrsporn, Phys. Rev. B 66, 161102 (2002).
[CrossRef]

S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, IEEE J. Quantum Electron. 38, 726 (2002).
[CrossRef]

M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, Appl. Phys. Lett. 81, 2680 (2002).
[CrossRef]

1996

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. Villeneuve, and J. D. Joannopoulos, Phys. Rev. Lett. 77, 3787 (1996).
[CrossRef] [PubMed]

1992

G. Cocorullo and I. Rendina, Electron. Lett. 28, 83 (1992).
[CrossRef]

1987

R. A. Soref and B. R. Bennet, IEEE J. Quantum Electron. QE-23, 123 (1987).
[CrossRef]

Akahane, Y.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, Nature 425, 944 (2003).
[CrossRef] [PubMed]

Almeida, V. R.

Asano, T.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, Nature 425, 944 (2003).
[CrossRef] [PubMed]

Barclay, P. E.

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, Nature 31, 1081 (2004).
[CrossRef]

Bennet, B. R.

R. A. Soref and B. R. Bennet, IEEE J. Quantum Electron. QE-23, 123 (1987).
[CrossRef]

Camargo, E. A.

Chen, J. C.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. Villeneuve, and J. D. Joannopoulos, Phys. Rev. Lett. 77, 3787 (1996).
[CrossRef] [PubMed]

Chong, H. M. H.

Chutinan, A.

S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, IEEE J. Quantum Electron. 38, 726 (2002).
[CrossRef]

Cocorullo, G.

G. Cocorullo and I. Rendina, Electron. Lett. 28, 83 (1992).
[CrossRef]

De Angelis, C.

A. Locatelli, D. Modotto, D. Paloschi, and C. De Angelis, Opt. Commun. 237, 97 (2004).
[CrossRef]

De La Rue, R. M.

Fan, S.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. Villeneuve, and J. D. Joannopoulos, Phys. Rev. Lett. 77, 3787 (1996).
[CrossRef] [PubMed]

Fedeli, J. M.

I. Märki, M. Salt, H. P. Herzig, R. Stanley, L. E. Melhaoui, P. Lyan, and J. M. Fedeli, J. Appl. Phys. 98, 013103 (2005).
[CrossRef]

Forchel, A.

Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, Appl. Phys. Lett. 82, 2767 (2003).
[CrossRef]

Gogna, P.

M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, Appl. Phys. Lett. 81, 2680 (2002).
[CrossRef]

Herzig, H. P.

I. Märki, M. Salt, H. P. Herzig, R. Stanley, L. E. Melhaoui, P. Lyan, and J. M. Fedeli, J. Appl. Phys. 98, 013103 (2005).
[CrossRef]

Imada, M.

S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, IEEE J. Quantum Electron. 38, 726 (2002).
[CrossRef]

Joannopoulos, J. D.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. Villeneuve, and J. D. Joannopoulos, Phys. Rev. Lett. 77, 3787 (1996).
[CrossRef] [PubMed]

Kamp, M.

Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, Appl. Phys. Lett. 82, 2767 (2003).
[CrossRef]

Klopf, F.

Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, Appl. Phys. Lett. 82, 2767 (2003).
[CrossRef]

Kuramochi, E.

Kurland, I.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. Villeneuve, and J. D. Joannopoulos, Phys. Rev. Lett. 77, 3787 (1996).
[CrossRef] [PubMed]

Leonard, S. W.

S. W. Leonard, H. M. van Driel, J. Schilling, and R. B. Wehrsporn, Phys. Rev. B 66, 161102 (2002).
[CrossRef]

Lipson, M.

V. R. Almeida and M. Lipson, Opt. Lett. 29, 2387 (2004).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, Nature 31, 1081 (2004).
[CrossRef]

M. Lipson, Nanotechnology 15, 622 (2004).
[CrossRef]

V. R. Almeida and M. Lipson, Opt. Lett. 29, 2387 (2004).
[CrossRef] [PubMed]

Locatelli, A.

A. Locatelli, D. Modotto, D. Paloschi, and C. De Angelis, Opt. Commun. 237, 97 (2004).
[CrossRef]

Loncar, M.

M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, Appl. Phys. Lett. 81, 2680 (2002).
[CrossRef]

Lyan, P.

I. Märki, M. Salt, H. P. Herzig, R. Stanley, L. E. Melhaoui, P. Lyan, and J. M. Fedeli, J. Appl. Phys. 98, 013103 (2005).
[CrossRef]

Märki, I.

I. Märki, M. Salt, H. P. Herzig, R. Stanley, L. E. Melhaoui, P. Lyan, and J. M. Fedeli, J. Appl. Phys. 98, 013103 (2005).
[CrossRef]

Mekis, A.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. Villeneuve, and J. D. Joannopoulos, Phys. Rev. Lett. 77, 3787 (1996).
[CrossRef] [PubMed]

Melhaoui, L. E.

I. Märki, M. Salt, H. P. Herzig, R. Stanley, L. E. Melhaoui, P. Lyan, and J. M. Fedeli, J. Appl. Phys. 98, 013103 (2005).
[CrossRef]

Mitsugi, S.

Mochizuki, M.

S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, IEEE J. Quantum Electron. 38, 726 (2002).
[CrossRef]

Modotto, D.

A. Locatelli, D. Modotto, D. Paloschi, and C. De Angelis, Opt. Commun. 237, 97 (2004).
[CrossRef]

Noda, S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, Nature 425, 944 (2003).
[CrossRef] [PubMed]

S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, IEEE J. Quantum Electron. 38, 726 (2002).
[CrossRef]

Notomi, M.

Ogawa, S.

S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, IEEE J. Quantum Electron. 38, 726 (2002).
[CrossRef]

Okano, M.

S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, IEEE J. Quantum Electron. 38, 726 (2002).
[CrossRef]

Painter, O.

Paloschi, D.

A. Locatelli, D. Modotto, D. Paloschi, and C. De Angelis, Opt. Commun. 237, 97 (2004).
[CrossRef]

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, Nature 31, 1081 (2004).
[CrossRef]

Qiu, Y.

M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, Appl. Phys. Lett. 81, 2680 (2002).
[CrossRef]

Reithmaier, J. P.

Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, Appl. Phys. Lett. 82, 2767 (2003).
[CrossRef]

Rendina, I.

G. Cocorullo and I. Rendina, Electron. Lett. 28, 83 (1992).
[CrossRef]

Ryu, H.-Y.

Salt, M.

I. Märki, M. Salt, H. P. Herzig, R. Stanley, L. E. Melhaoui, P. Lyan, and J. M. Fedeli, J. Appl. Phys. 98, 013103 (2005).
[CrossRef]

Scherer, A.

M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, Appl. Phys. Lett. 81, 2680 (2002).
[CrossRef]

Schilling, J.

S. W. Leonard, H. M. van Driel, J. Schilling, and R. B. Wehrsporn, Phys. Rev. B 66, 161102 (2002).
[CrossRef]

Schuller, Ch.

Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, Appl. Phys. Lett. 82, 2767 (2003).
[CrossRef]

Shinya, A.

Song, B.-S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, Nature 425, 944 (2003).
[CrossRef] [PubMed]

Soref, R. A.

R. A. Soref and B. R. Bennet, IEEE J. Quantum Electron. QE-23, 123 (1987).
[CrossRef]

Srinivasan, K.

Stanley, R.

I. Märki, M. Salt, H. P. Herzig, R. Stanley, L. E. Melhaoui, P. Lyan, and J. M. Fedeli, J. Appl. Phys. 98, 013103 (2005).
[CrossRef]

van Driel, H. M.

S. W. Leonard, H. M. van Driel, J. Schilling, and R. B. Wehrsporn, Phys. Rev. B 66, 161102 (2002).
[CrossRef]

Villeneuve, P.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. Villeneuve, and J. D. Joannopoulos, Phys. Rev. Lett. 77, 3787 (1996).
[CrossRef] [PubMed]

Wehrsporn, R. B.

S. W. Leonard, H. M. van Driel, J. Schilling, and R. B. Wehrsporn, Phys. Rev. B 66, 161102 (2002).
[CrossRef]

Yoshie, T.

M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, Appl. Phys. Lett. 81, 2680 (2002).
[CrossRef]

Appl. Phys. Lett.

M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, Appl. Phys. Lett. 81, 2680 (2002).
[CrossRef]

Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, Appl. Phys. Lett. 82, 2767 (2003).
[CrossRef]

Electron. Lett.

G. Cocorullo and I. Rendina, Electron. Lett. 28, 83 (1992).
[CrossRef]

IEEE J. Quantum Electron.

R. A. Soref and B. R. Bennet, IEEE J. Quantum Electron. QE-23, 123 (1987).
[CrossRef]

S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, IEEE J. Quantum Electron. 38, 726 (2002).
[CrossRef]

J. Appl. Phys.

I. Märki, M. Salt, H. P. Herzig, R. Stanley, L. E. Melhaoui, P. Lyan, and J. M. Fedeli, J. Appl. Phys. 98, 013103 (2005).
[CrossRef]

Nanotechnology

M. Lipson, Nanotechnology 15, 622 (2004).
[CrossRef]

Nature

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, Nature 425, 944 (2003).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, Nature 31, 1081 (2004).
[CrossRef]

Opt. Commun.

A. Locatelli, D. Modotto, D. Paloschi, and C. De Angelis, Opt. Commun. 237, 97 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

S. W. Leonard, H. M. van Driel, J. Schilling, and R. B. Wehrsporn, Phys. Rev. B 66, 161102 (2002).
[CrossRef]

Phys. Rev. Lett.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. Villeneuve, and J. D. Joannopoulos, Phys. Rev. Lett. 77, 3787 (1996).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

In-plane photonic crystal microcavity structure buried in silicon dioxide (PhC period a = 490 nm , hole diameter d = 350 nm , core thickness t = 238 nm , bottom oxide thickness s 2000 nm , upper cladding thickness c 700 nm ). The microcavity inside the photonic crystal waveguide is formed by two five-hole Bragg reflectors (hole dimensions b 1 = 325 nm and b 2 = 180 nm , period p = 373 nm ).

Fig. 2
Fig. 2

Measured transmission spectra through the photonic crystal microcavity (1) without and (3) with the control laser illumination ( λ = 532 nm ) . Curves (2) and (4) approximately indicate the change induced by the plasma dispersion and thermo-optical effects, respectively. The arrow indicates the fixed wavelength for the temporal response measurements. The inset depicts the unfiltered transmission spectrum with the periodic Fabry–Perot interference oscillations.

Fig. 3
Fig. 3

(a) Measured temporal response of the transmission signal with its switching characteristics [positions (1) to (4)]. The slight decrease of the signal in position (3) is most likely due to secondary thermal effects induced in the bulk silicon. (b) Square modulation pulse applied to the control laser.

Metrics