Abstract

Frequency conversion of a continuous light wave based on multistage phase modulation has been investigated both analytically and numerically. The proposed frequency-conversion process consists of three stages: (i) phase modulation and chirp compression to generate a pulse train, (ii) Doppler shift of the pulse center frequency in a second phase modulation, and (iii) demodulation of the pulse train. By controlling the modulation power we can select the destination frequency from an equally spaced grid separated by the modulation frequency. A conversion efficiency of 40% has been numerically confirmed with respect to a destination frequency of ±50 channels. Carrier frequency conversion of an analog data stream is numerically demonstrated.

© 2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wideband, Efficient Optical Serrodyne Frequency Shifting with a Phase Modulator and a Nonlinear Transmission Line

Rachel Houtz, Cheong Chan, and Holger Müller
Opt. Express 17(21) 19235-19240 (2009)

Electro-optic polymer frequency shifter activated by input optical pulses

Ilya Y. Poberezhskiy, Bartosz J. Bortnik, Seong-Ku Kim, and Harold R. Fetterman
Opt. Lett. 28(17) 1570-1572 (2003)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription