Abstract

Frequency conversion of a continuous light wave based on multistage phase modulation has been investigated both analytically and numerically. The proposed frequency-conversion process consists of three stages: (i) phase modulation and chirp compression to generate a pulse train, (ii) Doppler shift of the pulse center frequency in a second phase modulation, and (iii) demodulation of the pulse train. By controlling the modulation power we can select the destination frequency from an equally spaced grid separated by the modulation frequency. A conversion efficiency of 40% has been numerically confirmed with respect to a destination frequency of ±50 channels. Carrier frequency conversion of an analog data stream is numerically demonstrated.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Duguay, L. E. Hargrove, and K. B. Jefferts, Appl. Phys. Lett. 9, 287 (1966).
    [CrossRef]
  2. M. A. Duguay and J. W. Hansen, IEEE J. Quantum Electron. 4, 477 (1968).
    [CrossRef]
  3. I. Y. Poberezhskiy, B. J. Bortnik, S.-K. Kim, and H. R. Fetterman, Opt. Lett. 28. 1570 (2003).
    [CrossRef] [PubMed]
  4. M. Izutsu, S. Shikama, and T. Sueta, IEEE J. Quantum Electron. 17, 2225 (1981).
    [CrossRef]
  5. K. Shibuya, S. Hisatake, and T. Kobayashi, IEEE Photon. Technol. Lett. 16, 1939 (2004).
    [CrossRef]
  6. A. Morimoto, M. Tamaru, Y. Matsuda, M. Arisawa, and T. Kobayashi, in Pacific Rim Conference on Lasers and Electro-Optics (Institute of Electrical and Electronics Engineers, 1995), p. 234.

2004 (1)

K. Shibuya, S. Hisatake, and T. Kobayashi, IEEE Photon. Technol. Lett. 16, 1939 (2004).
[CrossRef]

2003 (1)

1995 (1)

A. Morimoto, M. Tamaru, Y. Matsuda, M. Arisawa, and T. Kobayashi, in Pacific Rim Conference on Lasers and Electro-Optics (Institute of Electrical and Electronics Engineers, 1995), p. 234.

1981 (1)

M. Izutsu, S. Shikama, and T. Sueta, IEEE J. Quantum Electron. 17, 2225 (1981).
[CrossRef]

1968 (1)

M. A. Duguay and J. W. Hansen, IEEE J. Quantum Electron. 4, 477 (1968).
[CrossRef]

1966 (1)

M. A. Duguay, L. E. Hargrove, and K. B. Jefferts, Appl. Phys. Lett. 9, 287 (1966).
[CrossRef]

Arisawa, M.

A. Morimoto, M. Tamaru, Y. Matsuda, M. Arisawa, and T. Kobayashi, in Pacific Rim Conference on Lasers and Electro-Optics (Institute of Electrical and Electronics Engineers, 1995), p. 234.

Bortnik, B. J.

Duguay, M. A.

M. A. Duguay and J. W. Hansen, IEEE J. Quantum Electron. 4, 477 (1968).
[CrossRef]

M. A. Duguay, L. E. Hargrove, and K. B. Jefferts, Appl. Phys. Lett. 9, 287 (1966).
[CrossRef]

Fetterman, H. R.

Hansen, J. W.

M. A. Duguay and J. W. Hansen, IEEE J. Quantum Electron. 4, 477 (1968).
[CrossRef]

Hargrove, L. E.

M. A. Duguay, L. E. Hargrove, and K. B. Jefferts, Appl. Phys. Lett. 9, 287 (1966).
[CrossRef]

Hisatake, S.

K. Shibuya, S. Hisatake, and T. Kobayashi, IEEE Photon. Technol. Lett. 16, 1939 (2004).
[CrossRef]

Izutsu, M.

M. Izutsu, S. Shikama, and T. Sueta, IEEE J. Quantum Electron. 17, 2225 (1981).
[CrossRef]

Jefferts, K. B.

M. A. Duguay, L. E. Hargrove, and K. B. Jefferts, Appl. Phys. Lett. 9, 287 (1966).
[CrossRef]

Kim, S.-K.

Kobayashi, T.

K. Shibuya, S. Hisatake, and T. Kobayashi, IEEE Photon. Technol. Lett. 16, 1939 (2004).
[CrossRef]

A. Morimoto, M. Tamaru, Y. Matsuda, M. Arisawa, and T. Kobayashi, in Pacific Rim Conference on Lasers and Electro-Optics (Institute of Electrical and Electronics Engineers, 1995), p. 234.

Matsuda, Y.

A. Morimoto, M. Tamaru, Y. Matsuda, M. Arisawa, and T. Kobayashi, in Pacific Rim Conference on Lasers and Electro-Optics (Institute of Electrical and Electronics Engineers, 1995), p. 234.

Morimoto, A.

A. Morimoto, M. Tamaru, Y. Matsuda, M. Arisawa, and T. Kobayashi, in Pacific Rim Conference on Lasers and Electro-Optics (Institute of Electrical and Electronics Engineers, 1995), p. 234.

Poberezhskiy, I. Y.

Shibuya, K.

K. Shibuya, S. Hisatake, and T. Kobayashi, IEEE Photon. Technol. Lett. 16, 1939 (2004).
[CrossRef]

Shikama, S.

M. Izutsu, S. Shikama, and T. Sueta, IEEE J. Quantum Electron. 17, 2225 (1981).
[CrossRef]

Sueta, T.

M. Izutsu, S. Shikama, and T. Sueta, IEEE J. Quantum Electron. 17, 2225 (1981).
[CrossRef]

Tamaru, M.

A. Morimoto, M. Tamaru, Y. Matsuda, M. Arisawa, and T. Kobayashi, in Pacific Rim Conference on Lasers and Electro-Optics (Institute of Electrical and Electronics Engineers, 1995), p. 234.

Appl. Phys. Lett. (1)

M. A. Duguay, L. E. Hargrove, and K. B. Jefferts, Appl. Phys. Lett. 9, 287 (1966).
[CrossRef]

IEEE J. Quantum Electron. (2)

M. A. Duguay and J. W. Hansen, IEEE J. Quantum Electron. 4, 477 (1968).
[CrossRef]

M. Izutsu, S. Shikama, and T. Sueta, IEEE J. Quantum Electron. 17, 2225 (1981).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Shibuya, S. Hisatake, and T. Kobayashi, IEEE Photon. Technol. Lett. 16, 1939 (2004).
[CrossRef]

Opt. Lett. (1)

Other (1)

A. Morimoto, M. Tamaru, Y. Matsuda, M. Arisawa, and T. Kobayashi, in Pacific Rim Conference on Lasers and Electro-Optics (Institute of Electrical and Electronics Engineers, 1995), p. 234.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of frequency conversion, which consists of three stages: (i) phase modulation and chirp compression, (ii) center frequency shifting of the pulse train, and (iii) demodulation of the pulse train. ϕ 1 ( n ) = ϕ 1 ( n ) exp ( j n π 2 ) , ϕ 2 ( n ) = ϕ 2 ( n ) exp ( j n π 2 ) .

Fig. 2
Fig. 2

(a) Output spectrum. The modulation index of EOM2 is 50 rad. n max = 48 . (b) Conversion efficiency and n max characteristics as a function of Δ θ 2 .

Fig. 3
Fig. 3

Results of the carrier frequency conversion. (a) Original signal spectrum, (b) spectrum around the destination sideband number of n max = 48 , (c) time-domain signal.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E 1 ( t ) = exp { j [ ω 0 t Δ θ 1 cos ( ω m t ) ] } = Σ n = J n ( Δ θ 1 ) exp [ j ( ω 0 + n ω m ) t ] ,
q 1 n = J n ( Δ θ 1 ) ϕ 1 ( n ) .
ϕ 1 ( n ) = exp ( j α 2 Δ θ 1 n 2 ) exp ( j π 2 n )
q 2 n = n = q 1 n J ( n n ) ( Δ θ 2 ) .
q 3 n = n = q 2 n ϕ 2 ( n ) J ( n n ) ( Δ θ 1 ) .
A ( t ) = [ 1 + 1 3 sin ( ω s t + π 3 ) + 1 6 sin ( 2 ω s t + π 6 ) + 1 3.6 sin ( 3 ω s t + π 3.6 ) + 1 4.5 sin ( 4 ω s t + π 4.5 ) + 1 2 sin ( 5 ω s t + π 2 ) ] exp ( j ω 0 t ) ,

Metrics