Abstract

We report a novel Fourier-transform-based implementation of coherent anti-Stokes Raman scattering (CARS) microscopy. The method employs a single femtosecond laser source and a Michelson interferometer to create two pulse replicas that are fed into a scanning multiphoton microscope. By varying the time delay between the pulses, we time-resolve the CARS signal, permitting easy removal of the nonresonant background while providing high resolution, spectrally resolved images of CARS modes over the laser bandwidth (1500cm1). We demonstrate the method by imaging polystyrene beads in solvent.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Zipfel, R. M. Williams, and W. W. Webb, Nat. Biotechnol. 21, 1369 (2003).
    [CrossRef] [PubMed]
  2. J. X. Cheng and X. S. Xie, J. Phys. Chem. B 108, 827 (2004).
    [CrossRef]
  3. R. W. Boyd, Nonlinear Optics (Academic, 1992).
  4. M. D. Duncan, J. Reintjes, and T. J. Manuccia, Opt. Lett. 7, 350 (1982).
    [CrossRef] [PubMed]
  5. A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
    [CrossRef]
  6. J. X. Chen, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 106, 8493 (2002).
    [CrossRef]
  7. M. Muller and J. M. Schins, J. Phys. Chem. B 106, 3715 (2002).
    [CrossRef]
  8. N. Dudovich, D. Oron, and Y. Silberberg, Nature 418, 512 (2002).
    [CrossRef] [PubMed]
  9. N. Dudovich, D. Oron, and Y. Silberberg, J. Chem. Phys. 118, 9208 (2003).
    [CrossRef]
  10. T. W. Kee and M. T. Cicerone, Opt. Lett. 29, 2701 (2004).
    [CrossRef] [PubMed]
  11. Y. X. Yan and K. A. Nelson, J. Chem. Phys. 87, 6257 (1987).
    [CrossRef]
  12. T. Hellerer, A. M. K. Enejder, and A. Zumbusch, Appl. Phys. Lett. 85, 25 (2004).
    [CrossRef]
  13. E. Gershgoren, R. A. Bartels, J. T. Fourkas, R. Tobey, M. M. Murnane, and H. C. Kapteyn, Opt. Lett. 28, 361 (2003).
    [CrossRef] [PubMed]
  14. A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, J. Opt. Soc. Am. B 8, 1264 (1991).
    [CrossRef]
  15. A. Volkmer, L. D. Book, and X. S. Xie, Appl. Phys. Lett. 80, 1505 (2002).
    [CrossRef]
  16. D. L. Marks, C. Vinegoni, J. S. Bredfeldt, and S. A. Boppart, Appl. Phys. Lett. 85, 5787 (2004).
    [CrossRef]
  17. K. Naganuma, K. Mogi, and H. Yamada, IEEE J. Quantum Electron. 25, 1225 (1989).
    [CrossRef]
  18. J. P. Ogilvie, K. Kubarych, A. Alexandrou, and M. Joffre, Opt. Lett. 30, 911 (2005).
    [CrossRef] [PubMed]
  19. R. L. Fork, O. E. Martinez, and J. P. Gordon, Opt. Lett. 9, 150 (1984).
    [CrossRef] [PubMed]
  20. A. C. Millard, D. N. Fittinghoff, J. A. Squier, M. Muller, and A. L. Gaeta, J. Microsc. (Oxford) 193, 179 (1999).
    [CrossRef]
  21. Sadtler Laboratories, "The Sadtler standard Raman spectra" (Sadtler Research Laboratories, Philadelphia, Pa., 1973).
  22. S. W. Cornell and J. L. Koenig, J. Appl. Phys. 39, 4883 (1968).
    [CrossRef]
  23. J. X. Cheng, A. Volkmer, and X. S. Xie, J. Opt. Soc. Am. B 19, 1363 (2002).
    [CrossRef]

2005

2004

T. W. Kee and M. T. Cicerone, Opt. Lett. 29, 2701 (2004).
[CrossRef] [PubMed]

J. X. Cheng and X. S. Xie, J. Phys. Chem. B 108, 827 (2004).
[CrossRef]

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, Appl. Phys. Lett. 85, 25 (2004).
[CrossRef]

D. L. Marks, C. Vinegoni, J. S. Bredfeldt, and S. A. Boppart, Appl. Phys. Lett. 85, 5787 (2004).
[CrossRef]

2003

W. R. Zipfel, R. M. Williams, and W. W. Webb, Nat. Biotechnol. 21, 1369 (2003).
[CrossRef] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, J. Chem. Phys. 118, 9208 (2003).
[CrossRef]

E. Gershgoren, R. A. Bartels, J. T. Fourkas, R. Tobey, M. M. Murnane, and H. C. Kapteyn, Opt. Lett. 28, 361 (2003).
[CrossRef] [PubMed]

2002

J. X. Cheng, A. Volkmer, and X. S. Xie, J. Opt. Soc. Am. B 19, 1363 (2002).
[CrossRef]

A. Volkmer, L. D. Book, and X. S. Xie, Appl. Phys. Lett. 80, 1505 (2002).
[CrossRef]

J. X. Chen, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 106, 8493 (2002).
[CrossRef]

M. Muller and J. M. Schins, J. Phys. Chem. B 106, 3715 (2002).
[CrossRef]

N. Dudovich, D. Oron, and Y. Silberberg, Nature 418, 512 (2002).
[CrossRef] [PubMed]

1999

A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

A. C. Millard, D. N. Fittinghoff, J. A. Squier, M. Muller, and A. L. Gaeta, J. Microsc. (Oxford) 193, 179 (1999).
[CrossRef]

1992

R. W. Boyd, Nonlinear Optics (Academic, 1992).

1991

1989

K. Naganuma, K. Mogi, and H. Yamada, IEEE J. Quantum Electron. 25, 1225 (1989).
[CrossRef]

1987

Y. X. Yan and K. A. Nelson, J. Chem. Phys. 87, 6257 (1987).
[CrossRef]

1984

1982

1973

Sadtler Laboratories, "The Sadtler standard Raman spectra" (Sadtler Research Laboratories, Philadelphia, Pa., 1973).

1968

S. W. Cornell and J. L. Koenig, J. Appl. Phys. 39, 4883 (1968).
[CrossRef]

Alexandrou, A.

Bartels, R. A.

Book, L. D.

J. X. Chen, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 106, 8493 (2002).
[CrossRef]

A. Volkmer, L. D. Book, and X. S. Xie, Appl. Phys. Lett. 80, 1505 (2002).
[CrossRef]

Boppart, S. A.

D. L. Marks, C. Vinegoni, J. S. Bredfeldt, and S. A. Boppart, Appl. Phys. Lett. 85, 5787 (2004).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 1992).

Bredfeldt, J. S.

D. L. Marks, C. Vinegoni, J. S. Bredfeldt, and S. A. Boppart, Appl. Phys. Lett. 85, 5787 (2004).
[CrossRef]

Chen, J. X.

J. X. Chen, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 106, 8493 (2002).
[CrossRef]

Cheng, J. X.

Cicerone, M. T.

Cornell, S. W.

S. W. Cornell and J. L. Koenig, J. Appl. Phys. 39, 4883 (1968).
[CrossRef]

Dudovich, N.

N. Dudovich, D. Oron, and Y. Silberberg, J. Chem. Phys. 118, 9208 (2003).
[CrossRef]

N. Dudovich, D. Oron, and Y. Silberberg, Nature 418, 512 (2002).
[CrossRef] [PubMed]

Duncan, M. D.

Enejder, A. M. K.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, Appl. Phys. Lett. 85, 25 (2004).
[CrossRef]

Fittinghoff, D. N.

A. C. Millard, D. N. Fittinghoff, J. A. Squier, M. Muller, and A. L. Gaeta, J. Microsc. (Oxford) 193, 179 (1999).
[CrossRef]

Fork, R. L.

Fourkas, J. T.

Gaeta, A. L.

A. C. Millard, D. N. Fittinghoff, J. A. Squier, M. Muller, and A. L. Gaeta, J. Microsc. (Oxford) 193, 179 (1999).
[CrossRef]

Gershgoren, E.

Gordon, J. P.

Hellerer, T.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, Appl. Phys. Lett. 85, 25 (2004).
[CrossRef]

Holtom, G. R.

A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

Joffre, M.

Kapteyn, H. C.

Kee, T. W.

Koenig, J. L.

S. W. Cornell and J. L. Koenig, J. Appl. Phys. 39, 4883 (1968).
[CrossRef]

Kubarych, K.

Leaird, D. E.

Manuccia, T. J.

Marks, D. L.

D. L. Marks, C. Vinegoni, J. S. Bredfeldt, and S. A. Boppart, Appl. Phys. Lett. 85, 5787 (2004).
[CrossRef]

Martinez, O. E.

Millard, A. C.

A. C. Millard, D. N. Fittinghoff, J. A. Squier, M. Muller, and A. L. Gaeta, J. Microsc. (Oxford) 193, 179 (1999).
[CrossRef]

Mogi, K.

K. Naganuma, K. Mogi, and H. Yamada, IEEE J. Quantum Electron. 25, 1225 (1989).
[CrossRef]

Muller, M.

M. Muller and J. M. Schins, J. Phys. Chem. B 106, 3715 (2002).
[CrossRef]

A. C. Millard, D. N. Fittinghoff, J. A. Squier, M. Muller, and A. L. Gaeta, J. Microsc. (Oxford) 193, 179 (1999).
[CrossRef]

Murnane, M. M.

Naganuma, K.

K. Naganuma, K. Mogi, and H. Yamada, IEEE J. Quantum Electron. 25, 1225 (1989).
[CrossRef]

Nelson, K. A.

Ogilvie, J. P.

Oron, D.

N. Dudovich, D. Oron, and Y. Silberberg, J. Chem. Phys. 118, 9208 (2003).
[CrossRef]

N. Dudovich, D. Oron, and Y. Silberberg, Nature 418, 512 (2002).
[CrossRef] [PubMed]

Reintjes, J.

Schins, J. M.

M. Muller and J. M. Schins, J. Phys. Chem. B 106, 3715 (2002).
[CrossRef]

Silberberg, Y.

N. Dudovich, D. Oron, and Y. Silberberg, J. Chem. Phys. 118, 9208 (2003).
[CrossRef]

N. Dudovich, D. Oron, and Y. Silberberg, Nature 418, 512 (2002).
[CrossRef] [PubMed]

Squier, J. A.

A. C. Millard, D. N. Fittinghoff, J. A. Squier, M. Muller, and A. L. Gaeta, J. Microsc. (Oxford) 193, 179 (1999).
[CrossRef]

Tobey, R.

Vinegoni, C.

D. L. Marks, C. Vinegoni, J. S. Bredfeldt, and S. A. Boppart, Appl. Phys. Lett. 85, 5787 (2004).
[CrossRef]

Volkmer, A.

J. X. Cheng, A. Volkmer, and X. S. Xie, J. Opt. Soc. Am. B 19, 1363 (2002).
[CrossRef]

A. Volkmer, L. D. Book, and X. S. Xie, Appl. Phys. Lett. 80, 1505 (2002).
[CrossRef]

J. X. Chen, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 106, 8493 (2002).
[CrossRef]

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, Nat. Biotechnol. 21, 1369 (2003).
[CrossRef] [PubMed]

Weiner, A. M.

Wiederrecht, G. P.

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, Nat. Biotechnol. 21, 1369 (2003).
[CrossRef] [PubMed]

Xie, X. S.

J. X. Cheng and X. S. Xie, J. Phys. Chem. B 108, 827 (2004).
[CrossRef]

J. X. Chen, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 106, 8493 (2002).
[CrossRef]

A. Volkmer, L. D. Book, and X. S. Xie, Appl. Phys. Lett. 80, 1505 (2002).
[CrossRef]

J. X. Cheng, A. Volkmer, and X. S. Xie, J. Opt. Soc. Am. B 19, 1363 (2002).
[CrossRef]

A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

Yamada, H.

K. Naganuma, K. Mogi, and H. Yamada, IEEE J. Quantum Electron. 25, 1225 (1989).
[CrossRef]

Yan, Y. X.

Y. X. Yan and K. A. Nelson, J. Chem. Phys. 87, 6257 (1987).
[CrossRef]

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, Nat. Biotechnol. 21, 1369 (2003).
[CrossRef] [PubMed]

Zumbusch, A.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, Appl. Phys. Lett. 85, 25 (2004).
[CrossRef]

A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

Appl. Phys. Lett.

A. Volkmer, L. D. Book, and X. S. Xie, Appl. Phys. Lett. 80, 1505 (2002).
[CrossRef]

D. L. Marks, C. Vinegoni, J. S. Bredfeldt, and S. A. Boppart, Appl. Phys. Lett. 85, 5787 (2004).
[CrossRef]

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, Appl. Phys. Lett. 85, 25 (2004).
[CrossRef]

IEEE J. Quantum Electron.

K. Naganuma, K. Mogi, and H. Yamada, IEEE J. Quantum Electron. 25, 1225 (1989).
[CrossRef]

J. Appl. Phys.

S. W. Cornell and J. L. Koenig, J. Appl. Phys. 39, 4883 (1968).
[CrossRef]

J. Chem. Phys.

Y. X. Yan and K. A. Nelson, J. Chem. Phys. 87, 6257 (1987).
[CrossRef]

N. Dudovich, D. Oron, and Y. Silberberg, J. Chem. Phys. 118, 9208 (2003).
[CrossRef]

J. Microsc.

A. C. Millard, D. N. Fittinghoff, J. A. Squier, M. Muller, and A. L. Gaeta, J. Microsc. (Oxford) 193, 179 (1999).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. B

J. X. Chen, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. B 106, 8493 (2002).
[CrossRef]

M. Muller and J. M. Schins, J. Phys. Chem. B 106, 3715 (2002).
[CrossRef]

J. X. Cheng and X. S. Xie, J. Phys. Chem. B 108, 827 (2004).
[CrossRef]

Nat. Biotechnol.

W. R. Zipfel, R. M. Williams, and W. W. Webb, Nat. Biotechnol. 21, 1369 (2003).
[CrossRef] [PubMed]

Nature

N. Dudovich, D. Oron, and Y. Silberberg, Nature 418, 512 (2002).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. Lett.

A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

Other

R. W. Boyd, Nonlinear Optics (Academic, 1992).

Sadtler Laboratories, "The Sadtler standard Raman spectra" (Sadtler Research Laboratories, Philadelphia, Pa., 1973).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(Color online) (a) Resonant CARS excitation, (b) nonresonant excitation. (c) Experimental setup for FT CARS microscopy: BS’s, beam splitters; PC, prism compressor for dispersion compensation; LPF, long-pass filter, cutoff at 780 nm ; DBS, dichroic beam splitter; SPF, short-pass filter, cutoff at 760 nm ; PMT 1, photomultiplier tube for epifluorescence detection; PMT 2, photomultiplier tube for CARS detection.

Fig. 2
Fig. 2

(Color online) (a) Two-photon fluorescence image of a 20 μ m polystyrene bead immersed in 2-propanol. (b) Spectrally resolved FTCARS image of the line in (a) [see (c) for scale]. (c) CARS spectra at positions 1 and 2 in (b).

Fig. 3
Fig. 3

Time-domain CARS signal in polystyrene at location 1 of Fig. 2b. The corresponding CARS spectrum is obtained through the Fourier transform after windowing out the nonresonant background at zero delay. The resultant spectrum is shown in Fig. 2c. Inset, clear oscillations corresponding to the 1005 cm 1 mode of polystyrene.

Metrics