Abstract

Chiral liquids rotate the plane of polarization of linearly polarized light and are therefore optically active. Here we show that optical rotation can be observed in the frequency domain. A chiral liquid introduced in a fiber-loop ring resonator that supports left and right circularly polarized modes gives rise to relative frequency shifts that are a direct measure of the liquid’s circular birefringence and hence of its optical activity. The effect is in principle not diminished if the circumference of the ring is reduced. The technique is similarly applicable to refractive index and linear birefringence measurements.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Le Grand and A. Le Floch, Opt. Lett. 17, 360 (1992).
    [PubMed]
  2. M. P. Silverman and J. Badoz, Opt. Commun. 105, 15 (1994).
  3. J. Poirson, M. Vallet, F. Bretenaker, A. Le Floch, and J.-Y. Thepot, Anal. Chem. 70, 4636 (1998).
    [PubMed]
  4. R. Engeln, G. Berden, E. van den Berg, and G. Meijer, J. Chem. Phys. 107, 4458 (1997).
  5. T. Muller, K. B. Wiberg, and P. H. Vaccaro, J. Phys. Chem. 104, 5959 (2000).
  6. V. A. Alekseev, B. Ya. Zeldovich, and I. I. Sobel'man, Sov. Phys. Usp. 19, 207 (1976).
  7. P. Lagoutte, Ph. Balcou, D. Jacob, F. Bretenaker, and A. Le Floch, Appl. Phys. Lett. 34, 459 (1995).
  8. L. F. Stokes, M. Chodorow, and H. J. Shaw, Opt. Lett. 7, 288 (1982).
    [PubMed]
  9. J. H. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, IEEE J. Quantum Electron. 40, 726 (2004).
  10. A. Melloni, F. Morichetti, and M. Martinelli, Opt. Lett. 29, 2785 (2004).
    [PubMed]
  11. A. Yariv, IEEE Photon. Technol. Lett. 14, 483 (2002).
  12. Z. K. Ioannidis, R. Kadiwar, and I. P. Giles, Opt. Lett. 14, 520 (1989).
    [PubMed]
  13. H. Okamura and K. Iwatsuki, J. Lightwave Technol. 9, 1554 (1991).

2004 (2)

J. H. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, IEEE J. Quantum Electron. 40, 726 (2004).

A. Melloni, F. Morichetti, and M. Martinelli, Opt. Lett. 29, 2785 (2004).
[PubMed]

2002 (1)

A. Yariv, IEEE Photon. Technol. Lett. 14, 483 (2002).

2000 (1)

T. Muller, K. B. Wiberg, and P. H. Vaccaro, J. Phys. Chem. 104, 5959 (2000).

1998 (1)

J. Poirson, M. Vallet, F. Bretenaker, A. Le Floch, and J.-Y. Thepot, Anal. Chem. 70, 4636 (1998).
[PubMed]

1997 (1)

R. Engeln, G. Berden, E. van den Berg, and G. Meijer, J. Chem. Phys. 107, 4458 (1997).

1995 (1)

P. Lagoutte, Ph. Balcou, D. Jacob, F. Bretenaker, and A. Le Floch, Appl. Phys. Lett. 34, 459 (1995).

1994 (1)

M. P. Silverman and J. Badoz, Opt. Commun. 105, 15 (1994).

1992 (1)

1991 (1)

H. Okamura and K. Iwatsuki, J. Lightwave Technol. 9, 1554 (1991).

1989 (1)

1982 (1)

1976 (1)

V. A. Alekseev, B. Ya. Zeldovich, and I. I. Sobel'man, Sov. Phys. Usp. 19, 207 (1976).

Alekseev, V. A.

V. A. Alekseev, B. Ya. Zeldovich, and I. I. Sobel'man, Sov. Phys. Usp. 19, 207 (1976).

Badoz, J.

M. P. Silverman and J. Badoz, Opt. Commun. 105, 15 (1994).

Balcou, Ph.

P. Lagoutte, Ph. Balcou, D. Jacob, F. Bretenaker, and A. Le Floch, Appl. Phys. Lett. 34, 459 (1995).

Berden, G.

R. Engeln, G. Berden, E. van den Berg, and G. Meijer, J. Chem. Phys. 107, 4458 (1997).

Boyd, R. W.

J. H. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, IEEE J. Quantum Electron. 40, 726 (2004).

Bretenaker, F.

J. Poirson, M. Vallet, F. Bretenaker, A. Le Floch, and J.-Y. Thepot, Anal. Chem. 70, 4636 (1998).
[PubMed]

P. Lagoutte, Ph. Balcou, D. Jacob, F. Bretenaker, and A. Le Floch, Appl. Phys. Lett. 34, 459 (1995).

Chodorow, M.

Engeln, R.

R. Engeln, G. Berden, E. van den Berg, and G. Meijer, J. Chem. Phys. 107, 4458 (1997).

Giles, I. P.

Heebner, J. H.

J. H. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, IEEE J. Quantum Electron. 40, 726 (2004).

Ioannidis, Z. K.

Iwatsuki, K.

H. Okamura and K. Iwatsuki, J. Lightwave Technol. 9, 1554 (1991).

Jackson, D. J.

J. H. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, IEEE J. Quantum Electron. 40, 726 (2004).

Jacob, D.

P. Lagoutte, Ph. Balcou, D. Jacob, F. Bretenaker, and A. Le Floch, Appl. Phys. Lett. 34, 459 (1995).

Kadiwar, R.

Lagoutte, P.

P. Lagoutte, Ph. Balcou, D. Jacob, F. Bretenaker, and A. Le Floch, Appl. Phys. Lett. 34, 459 (1995).

Le Floch, A.

J. Poirson, M. Vallet, F. Bretenaker, A. Le Floch, and J.-Y. Thepot, Anal. Chem. 70, 4636 (1998).
[PubMed]

P. Lagoutte, Ph. Balcou, D. Jacob, F. Bretenaker, and A. Le Floch, Appl. Phys. Lett. 34, 459 (1995).

Y. Le Grand and A. Le Floch, Opt. Lett. 17, 360 (1992).
[PubMed]

Le Grand, Y.

Martinelli, M.

Meijer, G.

R. Engeln, G. Berden, E. van den Berg, and G. Meijer, J. Chem. Phys. 107, 4458 (1997).

Melloni, A.

Morichetti, F.

Muller, T.

T. Muller, K. B. Wiberg, and P. H. Vaccaro, J. Phys. Chem. 104, 5959 (2000).

Okamura, H.

H. Okamura and K. Iwatsuki, J. Lightwave Technol. 9, 1554 (1991).

Poirson, J.

J. Poirson, M. Vallet, F. Bretenaker, A. Le Floch, and J.-Y. Thepot, Anal. Chem. 70, 4636 (1998).
[PubMed]

Schweinsberg, A.

J. H. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, IEEE J. Quantum Electron. 40, 726 (2004).

Shaw, H. J.

Silverman, M. P.

M. P. Silverman and J. Badoz, Opt. Commun. 105, 15 (1994).

Sobel'man, I. I.

V. A. Alekseev, B. Ya. Zeldovich, and I. I. Sobel'man, Sov. Phys. Usp. 19, 207 (1976).

Stokes, L. F.

Thepot, J.-Y.

J. Poirson, M. Vallet, F. Bretenaker, A. Le Floch, and J.-Y. Thepot, Anal. Chem. 70, 4636 (1998).
[PubMed]

Vaccaro, P. H.

T. Muller, K. B. Wiberg, and P. H. Vaccaro, J. Phys. Chem. 104, 5959 (2000).

Vallet, M.

J. Poirson, M. Vallet, F. Bretenaker, A. Le Floch, and J.-Y. Thepot, Anal. Chem. 70, 4636 (1998).
[PubMed]

van den Berg, E.

R. Engeln, G. Berden, E. van den Berg, and G. Meijer, J. Chem. Phys. 107, 4458 (1997).

Wiberg, K. B.

T. Muller, K. B. Wiberg, and P. H. Vaccaro, J. Phys. Chem. 104, 5959 (2000).

Wong, V.

J. H. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, IEEE J. Quantum Electron. 40, 726 (2004).

Yariv, A.

A. Yariv, IEEE Photon. Technol. Lett. 14, 483 (2002).

Zeldovich, B. Ya.

V. A. Alekseev, B. Ya. Zeldovich, and I. I. Sobel'man, Sov. Phys. Usp. 19, 207 (1976).

Anal. Chem. (1)

J. Poirson, M. Vallet, F. Bretenaker, A. Le Floch, and J.-Y. Thepot, Anal. Chem. 70, 4636 (1998).
[PubMed]

Appl. Phys. Lett. (1)

P. Lagoutte, Ph. Balcou, D. Jacob, F. Bretenaker, and A. Le Floch, Appl. Phys. Lett. 34, 459 (1995).

IEEE J. Quantum Electron. (1)

J. H. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, IEEE J. Quantum Electron. 40, 726 (2004).

IEEE Photon. Technol. Lett. (1)

A. Yariv, IEEE Photon. Technol. Lett. 14, 483 (2002).

J. Chem. Phys. (1)

R. Engeln, G. Berden, E. van den Berg, and G. Meijer, J. Chem. Phys. 107, 4458 (1997).

J. Lightwave Technol. (1)

H. Okamura and K. Iwatsuki, J. Lightwave Technol. 9, 1554 (1991).

J. Phys. Chem. (1)

T. Muller, K. B. Wiberg, and P. H. Vaccaro, J. Phys. Chem. 104, 5959 (2000).

Opt. Commun. (1)

M. P. Silverman and J. Badoz, Opt. Commun. 105, 15 (1994).

Opt. Lett. (4)

Sov. Phys. Usp. (1)

V. A. Alekseev, B. Ya. Zeldovich, and I. I. Sobel'man, Sov. Phys. Usp. 19, 207 (1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

A tunable 763 nm distributed-feedback (DFB) laser is coupled to a bus waveguide via an optical isolator (I). The ring resonator has a circumference of 50 cm . A polarizer (P1) and a half-wave plate ( λ 2 ) control the polarization of the light before the variable-ratio coupler (C). The U bench (U) connected via fiber ports holds two quarter-wave plates ( λ 4 ’s) and a 10 cm sample cell (S). Resonances are observed as either dips in the transmission spectrum with photodetector D1 or as peaks with photodetector D2. The polarization states of the modes in the ring can be analyzed after beam splitter (B) with polarization analyzer arrangement (PAA), which consists of a suitable combination of wave plates and polarizers.

Fig. 2
Fig. 2

(a) Transmission spectra (raw data) of limonone and a wavelength scan of 763 nm + d λ recorded by photodetector D2 (see Fig. 1). Spectra are shown after polarization analysis for either left (−) or right (+) circularly polarized modes (respectively, thin and thick solid curves) or for a scan without polarization analysis (dotted curve). For details see text. (b) Corresponding transmission spectrum (raw data) recorded with photodetector D1 (Fig. 1).

Fig. 3
Fig. 3

Change in the spacing of left (−) and right (+) circularly polarized resonant modes as a function of the enantiomeric excess. [R] and [S], respectively, denote the concentrations of the liquids’ R and S enantiomers. The lines are linear fits to the data.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

θ = π l λ [ n ( ) n ( + ) ] .
Δ λ λ = n s n 0 n eff f ,
Δ λ ( ) Δ λ ( + ) λ = n ( ) n ( + ) n eff f ,

Metrics