Abstract

Holographic gratings are recorded in colloidal suspensions of silver nanoparticles by utilizing interfering nanosecond pulses. The diffraction efficiency is measured with continuous-wave light. An instantaneous response together with a transient grating are observed: the nanoparticles absorb the pump light and heat up. Heat is transferred to the solvent, and a delayed thermal grating appears. The final decay time constant of this grating depends quadratically on the period length and has a typical value of 1μs for grating spacings of several micrometers.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Link and M. A. El-Sayed, Annu. Rev. Phys. Chem. 54, 331 (2003).
    [CrossRef] [PubMed]
  2. C. Voisin, N. D. Fatti, D. Christofilos, and F. Vallée, J. Phys. Chem. B 105, 2264 (2001).
    [CrossRef]
  3. C. Flytzanis, J. Phys. B 38, 661 (2005).
    [CrossRef]
  4. J. Lenglet, A. Bourdon, J. C. Bacri, and G. Demouchy, Phys. Rev. E 65, 031408 (2002).
    [CrossRef]
  5. A. Terray, J. Oakey, and D. W. M. Marra, Appl. Phys. Lett. 81, 1555 (2002).
    [CrossRef]
  6. M. Rosenbluh, I. Antonov, D. Ianetz, Y. Kaganovskii, and A. A. Lipovskii, Opt. Mater. 24, 401 (2003).
    [CrossRef]
  7. M. Rashidi-Huyeh and B. Palpant, J. Appl. Phys. 96, 4475 (2004).
    [CrossRef]
  8. C. P. Collier, "Design and characterization of a reversible metal-insulator transition in silver quantum dot monolayers," Ph.D. dissertation (University of California, Berkeley, 1998).
  9. H. Eichler, G. Salje, and H. Stahl, J. Appl. Phys. 44, 5383 (1973).
    [CrossRef]
  10. Y. Nagasaka, T. Hatakeyama, M. Okuda, and A. Nagashima, Rev. Sci. Instrum. 59, 1156 (1988).
    [CrossRef]
  11. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
  12. D.R.Lide, ed., CRC Handbook of Chemistry and Physics (Taylor & Francis, 2005).
  13. H. B. Liao, R. F. Xiao, J. S. Fu, H. Wang, K. S. Wong, and G. K. L. Wong, Opt. Lett. 23, 388 (1998).
    [CrossRef]
  14. F. Lang, P. Leiderer, and S. Georgiou, Appl. Phys. Lett. 85, 2759 (2004).
    [CrossRef]

2005

C. Flytzanis, J. Phys. B 38, 661 (2005).
[CrossRef]

D.R.Lide, ed., CRC Handbook of Chemistry and Physics (Taylor & Francis, 2005).

2004

F. Lang, P. Leiderer, and S. Georgiou, Appl. Phys. Lett. 85, 2759 (2004).
[CrossRef]

M. Rashidi-Huyeh and B. Palpant, J. Appl. Phys. 96, 4475 (2004).
[CrossRef]

2003

S. Link and M. A. El-Sayed, Annu. Rev. Phys. Chem. 54, 331 (2003).
[CrossRef] [PubMed]

M. Rosenbluh, I. Antonov, D. Ianetz, Y. Kaganovskii, and A. A. Lipovskii, Opt. Mater. 24, 401 (2003).
[CrossRef]

2002

J. Lenglet, A. Bourdon, J. C. Bacri, and G. Demouchy, Phys. Rev. E 65, 031408 (2002).
[CrossRef]

A. Terray, J. Oakey, and D. W. M. Marra, Appl. Phys. Lett. 81, 1555 (2002).
[CrossRef]

2001

C. Voisin, N. D. Fatti, D. Christofilos, and F. Vallée, J. Phys. Chem. B 105, 2264 (2001).
[CrossRef]

1998

1988

Y. Nagasaka, T. Hatakeyama, M. Okuda, and A. Nagashima, Rev. Sci. Instrum. 59, 1156 (1988).
[CrossRef]

1973

H. Eichler, G. Salje, and H. Stahl, J. Appl. Phys. 44, 5383 (1973).
[CrossRef]

1969

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Antonov, I.

M. Rosenbluh, I. Antonov, D. Ianetz, Y. Kaganovskii, and A. A. Lipovskii, Opt. Mater. 24, 401 (2003).
[CrossRef]

Bacri, J. C.

J. Lenglet, A. Bourdon, J. C. Bacri, and G. Demouchy, Phys. Rev. E 65, 031408 (2002).
[CrossRef]

Bourdon, A.

J. Lenglet, A. Bourdon, J. C. Bacri, and G. Demouchy, Phys. Rev. E 65, 031408 (2002).
[CrossRef]

Christofilos, D.

C. Voisin, N. D. Fatti, D. Christofilos, and F. Vallée, J. Phys. Chem. B 105, 2264 (2001).
[CrossRef]

Collier, C. P.

C. P. Collier, "Design and characterization of a reversible metal-insulator transition in silver quantum dot monolayers," Ph.D. dissertation (University of California, Berkeley, 1998).

Demouchy, G.

J. Lenglet, A. Bourdon, J. C. Bacri, and G. Demouchy, Phys. Rev. E 65, 031408 (2002).
[CrossRef]

Eichler, H.

H. Eichler, G. Salje, and H. Stahl, J. Appl. Phys. 44, 5383 (1973).
[CrossRef]

El-Sayed, M. A.

S. Link and M. A. El-Sayed, Annu. Rev. Phys. Chem. 54, 331 (2003).
[CrossRef] [PubMed]

Fatti, N. D.

C. Voisin, N. D. Fatti, D. Christofilos, and F. Vallée, J. Phys. Chem. B 105, 2264 (2001).
[CrossRef]

Flytzanis, C.

C. Flytzanis, J. Phys. B 38, 661 (2005).
[CrossRef]

Fu, J. S.

Georgiou, S.

F. Lang, P. Leiderer, and S. Georgiou, Appl. Phys. Lett. 85, 2759 (2004).
[CrossRef]

Hatakeyama, T.

Y. Nagasaka, T. Hatakeyama, M. Okuda, and A. Nagashima, Rev. Sci. Instrum. 59, 1156 (1988).
[CrossRef]

Ianetz, D.

M. Rosenbluh, I. Antonov, D. Ianetz, Y. Kaganovskii, and A. A. Lipovskii, Opt. Mater. 24, 401 (2003).
[CrossRef]

Kaganovskii, Y.

M. Rosenbluh, I. Antonov, D. Ianetz, Y. Kaganovskii, and A. A. Lipovskii, Opt. Mater. 24, 401 (2003).
[CrossRef]

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Lang, F.

F. Lang, P. Leiderer, and S. Georgiou, Appl. Phys. Lett. 85, 2759 (2004).
[CrossRef]

Leiderer, P.

F. Lang, P. Leiderer, and S. Georgiou, Appl. Phys. Lett. 85, 2759 (2004).
[CrossRef]

Lenglet, J.

J. Lenglet, A. Bourdon, J. C. Bacri, and G. Demouchy, Phys. Rev. E 65, 031408 (2002).
[CrossRef]

Liao, H. B.

Link, S.

S. Link and M. A. El-Sayed, Annu. Rev. Phys. Chem. 54, 331 (2003).
[CrossRef] [PubMed]

Lipovskii, A. A.

M. Rosenbluh, I. Antonov, D. Ianetz, Y. Kaganovskii, and A. A. Lipovskii, Opt. Mater. 24, 401 (2003).
[CrossRef]

Marra, D. W. M.

A. Terray, J. Oakey, and D. W. M. Marra, Appl. Phys. Lett. 81, 1555 (2002).
[CrossRef]

Nagasaka, Y.

Y. Nagasaka, T. Hatakeyama, M. Okuda, and A. Nagashima, Rev. Sci. Instrum. 59, 1156 (1988).
[CrossRef]

Nagashima, A.

Y. Nagasaka, T. Hatakeyama, M. Okuda, and A. Nagashima, Rev. Sci. Instrum. 59, 1156 (1988).
[CrossRef]

Oakey, J.

A. Terray, J. Oakey, and D. W. M. Marra, Appl. Phys. Lett. 81, 1555 (2002).
[CrossRef]

Okuda, M.

Y. Nagasaka, T. Hatakeyama, M. Okuda, and A. Nagashima, Rev. Sci. Instrum. 59, 1156 (1988).
[CrossRef]

Palpant, B.

M. Rashidi-Huyeh and B. Palpant, J. Appl. Phys. 96, 4475 (2004).
[CrossRef]

Rashidi-Huyeh, M.

M. Rashidi-Huyeh and B. Palpant, J. Appl. Phys. 96, 4475 (2004).
[CrossRef]

Rosenbluh, M.

M. Rosenbluh, I. Antonov, D. Ianetz, Y. Kaganovskii, and A. A. Lipovskii, Opt. Mater. 24, 401 (2003).
[CrossRef]

Salje, G.

H. Eichler, G. Salje, and H. Stahl, J. Appl. Phys. 44, 5383 (1973).
[CrossRef]

Stahl, H.

H. Eichler, G. Salje, and H. Stahl, J. Appl. Phys. 44, 5383 (1973).
[CrossRef]

Terray, A.

A. Terray, J. Oakey, and D. W. M. Marra, Appl. Phys. Lett. 81, 1555 (2002).
[CrossRef]

Vallée, F.

C. Voisin, N. D. Fatti, D. Christofilos, and F. Vallée, J. Phys. Chem. B 105, 2264 (2001).
[CrossRef]

Voisin, C.

C. Voisin, N. D. Fatti, D. Christofilos, and F. Vallée, J. Phys. Chem. B 105, 2264 (2001).
[CrossRef]

Wang, H.

Wong, G. K. L.

Wong, K. S.

Xiao, R. F.

Annu. Rev. Phys. Chem.

S. Link and M. A. El-Sayed, Annu. Rev. Phys. Chem. 54, 331 (2003).
[CrossRef] [PubMed]

Appl. Phys. Lett.

A. Terray, J. Oakey, and D. W. M. Marra, Appl. Phys. Lett. 81, 1555 (2002).
[CrossRef]

F. Lang, P. Leiderer, and S. Georgiou, Appl. Phys. Lett. 85, 2759 (2004).
[CrossRef]

Bell Syst. Tech. J.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

J. Appl. Phys.

H. Eichler, G. Salje, and H. Stahl, J. Appl. Phys. 44, 5383 (1973).
[CrossRef]

M. Rashidi-Huyeh and B. Palpant, J. Appl. Phys. 96, 4475 (2004).
[CrossRef]

J. Phys. B

C. Flytzanis, J. Phys. B 38, 661 (2005).
[CrossRef]

J. Phys. Chem. B

C. Voisin, N. D. Fatti, D. Christofilos, and F. Vallée, J. Phys. Chem. B 105, 2264 (2001).
[CrossRef]

Opt. Lett.

Opt. Mater.

M. Rosenbluh, I. Antonov, D. Ianetz, Y. Kaganovskii, and A. A. Lipovskii, Opt. Mater. 24, 401 (2003).
[CrossRef]

Phys. Rev. E

J. Lenglet, A. Bourdon, J. C. Bacri, and G. Demouchy, Phys. Rev. E 65, 031408 (2002).
[CrossRef]

Rev. Sci. Instrum.

Y. Nagasaka, T. Hatakeyama, M. Okuda, and A. Nagashima, Rev. Sci. Instrum. 59, 1156 (1988).
[CrossRef]

Other

D.R.Lide, ed., CRC Handbook of Chemistry and Physics (Taylor & Francis, 2005).

C. P. Collier, "Design and characterization of a reversible metal-insulator transition in silver quantum dot monolayers," Ph.D. dissertation (University of California, Berkeley, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Intensity of the diffracted beam versus time t for different particle concentrations. Pump intensities (a)–(c) I = 4.6 GW m 2 and (d)–(f) I = 10 GW m 2 . Particle concentrations (a), (d) 3.47 × 10 14 cm 3 ( OD 1.1 ) , (b), (e) 1.74 × 10 14 cm 3 ( OD 0.55 ) , and (c), (f) 0.7 × 10 14 cm 3 ( OD 0.22 ) .

Fig. 2
Fig. 2

Diffracted intensity versus time t for three different pump intensities in samples with particle concentrations of (a) 2.4 × 10 14 cm 3 ( OD = 0.76 ) and (b) 1.07 × 10 14 cm 3 ( OD = 0.34 ) .

Fig. 3
Fig. 3

Time constant τ of the decay of the diffraction efficiency versus grating period Λ of the thermal grating. The solid curve is a quadratic fit according to the equation τ = a × Λ 2 .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ T = T 0 exp ( t τ th ) ,
τ th = Λ 2 4 π 2 κ .

Metrics