Abstract

Holographic gratings are recorded in colloidal suspensions of silver nanoparticles by utilizing interfering nanosecond pulses. The diffraction efficiency is measured with continuous-wave light. An instantaneous response together with a transient grating are observed: the nanoparticles absorb the pump light and heat up. Heat is transferred to the solvent, and a delayed thermal grating appears. The final decay time constant of this grating depends quadratically on the period length and has a typical value of 1μs for grating spacings of several micrometers.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Link and M. A. El-Sayed, Annu. Rev. Phys. Chem. 54, 331 (2003).
    [CrossRef] [PubMed]
  2. C. Voisin, N. D. Fatti, D. Christofilos, and F. Vallée, J. Phys. Chem. B 105, 2264 (2001).
    [CrossRef]
  3. C. Flytzanis, J. Phys. B 38, 661 (2005).
    [CrossRef]
  4. J. Lenglet, A. Bourdon, J. C. Bacri, and G. Demouchy, Phys. Rev. E 65, 031408 (2002).
    [CrossRef]
  5. A. Terray, J. Oakey, and D. W. M. Marra, Appl. Phys. Lett. 81, 1555 (2002).
    [CrossRef]
  6. M. Rosenbluh, I. Antonov, D. Ianetz, Y. Kaganovskii, and A. A. Lipovskii, Opt. Mater. 24, 401 (2003).
    [CrossRef]
  7. M. Rashidi-Huyeh and B. Palpant, J. Appl. Phys. 96, 4475 (2004).
    [CrossRef]
  8. C. P. Collier, "Design and characterization of a reversible metal-insulator transition in silver quantum dot monolayers," Ph.D. dissertation (University of California, Berkeley, 1998).
  9. H. Eichler, G. Salje, and H. Stahl, J. Appl. Phys. 44, 5383 (1973).
    [CrossRef]
  10. Y. Nagasaka, T. Hatakeyama, M. Okuda, and A. Nagashima, Rev. Sci. Instrum. 59, 1156 (1988).
    [CrossRef]
  11. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
  12. D.R.Lide, ed., CRC Handbook of Chemistry and Physics (Taylor & Francis, 2005).
  13. H. B. Liao, R. F. Xiao, J. S. Fu, H. Wang, K. S. Wong, and G. K. L. Wong, Opt. Lett. 23, 388 (1998).
    [CrossRef]
  14. F. Lang, P. Leiderer, and S. Georgiou, Appl. Phys. Lett. 85, 2759 (2004).
    [CrossRef]

2005 (2)

C. Flytzanis, J. Phys. B 38, 661 (2005).
[CrossRef]

D.R.Lide, ed., CRC Handbook of Chemistry and Physics (Taylor & Francis, 2005).

2004 (2)

F. Lang, P. Leiderer, and S. Georgiou, Appl. Phys. Lett. 85, 2759 (2004).
[CrossRef]

M. Rashidi-Huyeh and B. Palpant, J. Appl. Phys. 96, 4475 (2004).
[CrossRef]

2003 (2)

S. Link and M. A. El-Sayed, Annu. Rev. Phys. Chem. 54, 331 (2003).
[CrossRef] [PubMed]

M. Rosenbluh, I. Antonov, D. Ianetz, Y. Kaganovskii, and A. A. Lipovskii, Opt. Mater. 24, 401 (2003).
[CrossRef]

2002 (2)

J. Lenglet, A. Bourdon, J. C. Bacri, and G. Demouchy, Phys. Rev. E 65, 031408 (2002).
[CrossRef]

A. Terray, J. Oakey, and D. W. M. Marra, Appl. Phys. Lett. 81, 1555 (2002).
[CrossRef]

2001 (1)

C. Voisin, N. D. Fatti, D. Christofilos, and F. Vallée, J. Phys. Chem. B 105, 2264 (2001).
[CrossRef]

1998 (1)

1988 (1)

Y. Nagasaka, T. Hatakeyama, M. Okuda, and A. Nagashima, Rev. Sci. Instrum. 59, 1156 (1988).
[CrossRef]

1973 (1)

H. Eichler, G. Salje, and H. Stahl, J. Appl. Phys. 44, 5383 (1973).
[CrossRef]

1969 (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Antonov, I.

M. Rosenbluh, I. Antonov, D. Ianetz, Y. Kaganovskii, and A. A. Lipovskii, Opt. Mater. 24, 401 (2003).
[CrossRef]

Bacri, J. C.

J. Lenglet, A. Bourdon, J. C. Bacri, and G. Demouchy, Phys. Rev. E 65, 031408 (2002).
[CrossRef]

Bourdon, A.

J. Lenglet, A. Bourdon, J. C. Bacri, and G. Demouchy, Phys. Rev. E 65, 031408 (2002).
[CrossRef]

Christofilos, D.

C. Voisin, N. D. Fatti, D. Christofilos, and F. Vallée, J. Phys. Chem. B 105, 2264 (2001).
[CrossRef]

Collier, C. P.

C. P. Collier, "Design and characterization of a reversible metal-insulator transition in silver quantum dot monolayers," Ph.D. dissertation (University of California, Berkeley, 1998).

Demouchy, G.

J. Lenglet, A. Bourdon, J. C. Bacri, and G. Demouchy, Phys. Rev. E 65, 031408 (2002).
[CrossRef]

Eichler, H.

H. Eichler, G. Salje, and H. Stahl, J. Appl. Phys. 44, 5383 (1973).
[CrossRef]

El-Sayed, M. A.

S. Link and M. A. El-Sayed, Annu. Rev. Phys. Chem. 54, 331 (2003).
[CrossRef] [PubMed]

Fatti, N. D.

C. Voisin, N. D. Fatti, D. Christofilos, and F. Vallée, J. Phys. Chem. B 105, 2264 (2001).
[CrossRef]

Flytzanis, C.

C. Flytzanis, J. Phys. B 38, 661 (2005).
[CrossRef]

Fu, J. S.

Georgiou, S.

F. Lang, P. Leiderer, and S. Georgiou, Appl. Phys. Lett. 85, 2759 (2004).
[CrossRef]

Hatakeyama, T.

Y. Nagasaka, T. Hatakeyama, M. Okuda, and A. Nagashima, Rev. Sci. Instrum. 59, 1156 (1988).
[CrossRef]

Ianetz, D.

M. Rosenbluh, I. Antonov, D. Ianetz, Y. Kaganovskii, and A. A. Lipovskii, Opt. Mater. 24, 401 (2003).
[CrossRef]

Kaganovskii, Y.

M. Rosenbluh, I. Antonov, D. Ianetz, Y. Kaganovskii, and A. A. Lipovskii, Opt. Mater. 24, 401 (2003).
[CrossRef]

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Lang, F.

F. Lang, P. Leiderer, and S. Georgiou, Appl. Phys. Lett. 85, 2759 (2004).
[CrossRef]

Leiderer, P.

F. Lang, P. Leiderer, and S. Georgiou, Appl. Phys. Lett. 85, 2759 (2004).
[CrossRef]

Lenglet, J.

J. Lenglet, A. Bourdon, J. C. Bacri, and G. Demouchy, Phys. Rev. E 65, 031408 (2002).
[CrossRef]

Liao, H. B.

Link, S.

S. Link and M. A. El-Sayed, Annu. Rev. Phys. Chem. 54, 331 (2003).
[CrossRef] [PubMed]

Lipovskii, A. A.

M. Rosenbluh, I. Antonov, D. Ianetz, Y. Kaganovskii, and A. A. Lipovskii, Opt. Mater. 24, 401 (2003).
[CrossRef]

Marra, D. W. M.

A. Terray, J. Oakey, and D. W. M. Marra, Appl. Phys. Lett. 81, 1555 (2002).
[CrossRef]

Nagasaka, Y.

Y. Nagasaka, T. Hatakeyama, M. Okuda, and A. Nagashima, Rev. Sci. Instrum. 59, 1156 (1988).
[CrossRef]

Nagashima, A.

Y. Nagasaka, T. Hatakeyama, M. Okuda, and A. Nagashima, Rev. Sci. Instrum. 59, 1156 (1988).
[CrossRef]

Oakey, J.

A. Terray, J. Oakey, and D. W. M. Marra, Appl. Phys. Lett. 81, 1555 (2002).
[CrossRef]

Okuda, M.

Y. Nagasaka, T. Hatakeyama, M. Okuda, and A. Nagashima, Rev. Sci. Instrum. 59, 1156 (1988).
[CrossRef]

Palpant, B.

M. Rashidi-Huyeh and B. Palpant, J. Appl. Phys. 96, 4475 (2004).
[CrossRef]

Rashidi-Huyeh, M.

M. Rashidi-Huyeh and B. Palpant, J. Appl. Phys. 96, 4475 (2004).
[CrossRef]

Rosenbluh, M.

M. Rosenbluh, I. Antonov, D. Ianetz, Y. Kaganovskii, and A. A. Lipovskii, Opt. Mater. 24, 401 (2003).
[CrossRef]

Salje, G.

H. Eichler, G. Salje, and H. Stahl, J. Appl. Phys. 44, 5383 (1973).
[CrossRef]

Stahl, H.

H. Eichler, G. Salje, and H. Stahl, J. Appl. Phys. 44, 5383 (1973).
[CrossRef]

Terray, A.

A. Terray, J. Oakey, and D. W. M. Marra, Appl. Phys. Lett. 81, 1555 (2002).
[CrossRef]

Vallée, F.

C. Voisin, N. D. Fatti, D. Christofilos, and F. Vallée, J. Phys. Chem. B 105, 2264 (2001).
[CrossRef]

Voisin, C.

C. Voisin, N. D. Fatti, D. Christofilos, and F. Vallée, J. Phys. Chem. B 105, 2264 (2001).
[CrossRef]

Wang, H.

Wong, G. K. L.

Wong, K. S.

Xiao, R. F.

Annu. Rev. Phys. Chem. (1)

S. Link and M. A. El-Sayed, Annu. Rev. Phys. Chem. 54, 331 (2003).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

A. Terray, J. Oakey, and D. W. M. Marra, Appl. Phys. Lett. 81, 1555 (2002).
[CrossRef]

F. Lang, P. Leiderer, and S. Georgiou, Appl. Phys. Lett. 85, 2759 (2004).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

J. Appl. Phys. (2)

H. Eichler, G. Salje, and H. Stahl, J. Appl. Phys. 44, 5383 (1973).
[CrossRef]

M. Rashidi-Huyeh and B. Palpant, J. Appl. Phys. 96, 4475 (2004).
[CrossRef]

J. Phys. B (1)

C. Flytzanis, J. Phys. B 38, 661 (2005).
[CrossRef]

J. Phys. Chem. B (1)

C. Voisin, N. D. Fatti, D. Christofilos, and F. Vallée, J. Phys. Chem. B 105, 2264 (2001).
[CrossRef]

Opt. Lett. (1)

Opt. Mater. (1)

M. Rosenbluh, I. Antonov, D. Ianetz, Y. Kaganovskii, and A. A. Lipovskii, Opt. Mater. 24, 401 (2003).
[CrossRef]

Phys. Rev. E (1)

J. Lenglet, A. Bourdon, J. C. Bacri, and G. Demouchy, Phys. Rev. E 65, 031408 (2002).
[CrossRef]

Rev. Sci. Instrum. (1)

Y. Nagasaka, T. Hatakeyama, M. Okuda, and A. Nagashima, Rev. Sci. Instrum. 59, 1156 (1988).
[CrossRef]

Other (2)

D.R.Lide, ed., CRC Handbook of Chemistry and Physics (Taylor & Francis, 2005).

C. P. Collier, "Design and characterization of a reversible metal-insulator transition in silver quantum dot monolayers," Ph.D. dissertation (University of California, Berkeley, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Intensity of the diffracted beam versus time t for different particle concentrations. Pump intensities (a)–(c) I = 4.6 GW m 2 and (d)–(f) I = 10 GW m 2 . Particle concentrations (a), (d) 3.47 × 10 14 cm 3 ( OD 1.1 ) , (b), (e) 1.74 × 10 14 cm 3 ( OD 0.55 ) , and (c), (f) 0.7 × 10 14 cm 3 ( OD 0.22 ) .

Fig. 2
Fig. 2

Diffracted intensity versus time t for three different pump intensities in samples with particle concentrations of (a) 2.4 × 10 14 cm 3 ( OD = 0.76 ) and (b) 1.07 × 10 14 cm 3 ( OD = 0.34 ) .

Fig. 3
Fig. 3

Time constant τ of the decay of the diffraction efficiency versus grating period Λ of the thermal grating. The solid curve is a quadratic fit according to the equation τ = a × Λ 2 .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ T = T 0 exp ( t τ th ) ,
τ th = Λ 2 4 π 2 κ .

Metrics