Abstract

The combination of broadband pulses from a photonic crystal fiber (PCF) pumped by a standard 100 fs oscillator and pulse shaping is successfully employed for coherently controlled nonlinear spectroscopy. The pulse shaper manages not only to compress the PCF supercontinuum in a closed-loop optimization scheme but also to manipulate the phase at the same time for quantum control applications. This approach is demonstrated by single-beam coherent anti-Stokes Raman microspectroscopy and should be, due to its simplicity, well suited for general applications in nonlinear microscopy.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription