Abstract

A free-space silicon one-dimensional photonic bandgap optical filter is designed and fabricated. A two-stage (110) wafer etching process is employed to form the extremely vertical, smooth, and high-aspect-ratio features that are essential for good optical properties. The ⟨111⟩ oriented planes of the wafer form <0.01° off-vertical trenches that make up the Fabry–Perot filter. A simulation model is presented that analyzes the effect of verticality and predicts the measured spectrum well.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Hohlfeld, M. Epmeier, and H. Zappe, Sens. Actuators A 103, 93 (2003).
    [CrossRef]
  2. C. F. R. Mateus, C.-H. Chang, L. Chrostowski, S. Yang, D. Sun, R. Pathak, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 14, 819 (2002).
    [CrossRef]
  3. Y. Yi, P. Bermel, K. Wada, X. Duan, J. D. Joannopoulos, and L. C. Kimerling, Appl. Phys. Lett. 81, 4112 (2002).
    [CrossRef]
  4. S.-S. Yun and J.-H. Lee, J. Micromech. Microeng. 13, 721 (2003).
    [CrossRef]
  5. W. H. Juan and S. W. Panga, J. Vac. Sci. Technol. B 14, 4080 (1996).
    [CrossRef]
  6. D. Nilsson, S. Jensen, and A. Menon, J. Micromech. Microeng. 13, 57 (2003).
    [CrossRef]
  7. S.-S. Yun, S.-K. You, and J.-H. Lee, presented at the International Conference on Optical MEMS, Takamatsu, Japan, August 22-26, 2004.
  8. A. Lipson and E. M. Yeatman, presented at the International Conference on Optical MEMS, Oulu, Finland, August 1-4, 2005.
  9. J. A. Wahl, J. S. Van Delden, and S. Tiwari, IEEE Photon. Technol. Lett. 16, 1873 (2004).
    [CrossRef]
  10. H. A. Macleod, Thin Film Optical Filters, 3rd ed. (Institute of Physics Publishing, 2002), p. 642.
  11. D. L. Kendall, Annu. Rev. Mater. Sci. 9, 373 (1979).
    [CrossRef]
  12. Y. Uenishi, M. Tsugai, and M. Mehregany, J. Micromech. Microeng. 5, 305 (1995).
    [CrossRef]
  13. A. Holke and H. T. Henderson, J. Micromech. Microeng. 9, 51 (1999).
    [CrossRef]

2004 (1)

J. A. Wahl, J. S. Van Delden, and S. Tiwari, IEEE Photon. Technol. Lett. 16, 1873 (2004).
[CrossRef]

2003 (3)

D. Nilsson, S. Jensen, and A. Menon, J. Micromech. Microeng. 13, 57 (2003).
[CrossRef]

D. Hohlfeld, M. Epmeier, and H. Zappe, Sens. Actuators A 103, 93 (2003).
[CrossRef]

S.-S. Yun and J.-H. Lee, J. Micromech. Microeng. 13, 721 (2003).
[CrossRef]

2002 (2)

C. F. R. Mateus, C.-H. Chang, L. Chrostowski, S. Yang, D. Sun, R. Pathak, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 14, 819 (2002).
[CrossRef]

Y. Yi, P. Bermel, K. Wada, X. Duan, J. D. Joannopoulos, and L. C. Kimerling, Appl. Phys. Lett. 81, 4112 (2002).
[CrossRef]

1999 (1)

A. Holke and H. T. Henderson, J. Micromech. Microeng. 9, 51 (1999).
[CrossRef]

1996 (1)

W. H. Juan and S. W. Panga, J. Vac. Sci. Technol. B 14, 4080 (1996).
[CrossRef]

1995 (1)

Y. Uenishi, M. Tsugai, and M. Mehregany, J. Micromech. Microeng. 5, 305 (1995).
[CrossRef]

1979 (1)

D. L. Kendall, Annu. Rev. Mater. Sci. 9, 373 (1979).
[CrossRef]

Bermel, P.

Y. Yi, P. Bermel, K. Wada, X. Duan, J. D. Joannopoulos, and L. C. Kimerling, Appl. Phys. Lett. 81, 4112 (2002).
[CrossRef]

Chang, C.-H.

C. F. R. Mateus, C.-H. Chang, L. Chrostowski, S. Yang, D. Sun, R. Pathak, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 14, 819 (2002).
[CrossRef]

Chang-Hasnain, C. J.

C. F. R. Mateus, C.-H. Chang, L. Chrostowski, S. Yang, D. Sun, R. Pathak, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 14, 819 (2002).
[CrossRef]

Chrostowski, L.

C. F. R. Mateus, C.-H. Chang, L. Chrostowski, S. Yang, D. Sun, R. Pathak, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 14, 819 (2002).
[CrossRef]

Duan, X.

Y. Yi, P. Bermel, K. Wada, X. Duan, J. D. Joannopoulos, and L. C. Kimerling, Appl. Phys. Lett. 81, 4112 (2002).
[CrossRef]

Epmeier, M.

D. Hohlfeld, M. Epmeier, and H. Zappe, Sens. Actuators A 103, 93 (2003).
[CrossRef]

Henderson, H. T.

A. Holke and H. T. Henderson, J. Micromech. Microeng. 9, 51 (1999).
[CrossRef]

Hohlfeld, D.

D. Hohlfeld, M. Epmeier, and H. Zappe, Sens. Actuators A 103, 93 (2003).
[CrossRef]

Holke, A.

A. Holke and H. T. Henderson, J. Micromech. Microeng. 9, 51 (1999).
[CrossRef]

Jensen, S.

D. Nilsson, S. Jensen, and A. Menon, J. Micromech. Microeng. 13, 57 (2003).
[CrossRef]

Joannopoulos, J. D.

Y. Yi, P. Bermel, K. Wada, X. Duan, J. D. Joannopoulos, and L. C. Kimerling, Appl. Phys. Lett. 81, 4112 (2002).
[CrossRef]

Juan, W. H.

W. H. Juan and S. W. Panga, J. Vac. Sci. Technol. B 14, 4080 (1996).
[CrossRef]

Kendall, D. L.

D. L. Kendall, Annu. Rev. Mater. Sci. 9, 373 (1979).
[CrossRef]

Kimerling, L. C.

Y. Yi, P. Bermel, K. Wada, X. Duan, J. D. Joannopoulos, and L. C. Kimerling, Appl. Phys. Lett. 81, 4112 (2002).
[CrossRef]

Lee, J.-H.

S.-S. Yun and J.-H. Lee, J. Micromech. Microeng. 13, 721 (2003).
[CrossRef]

S.-S. Yun, S.-K. You, and J.-H. Lee, presented at the International Conference on Optical MEMS, Takamatsu, Japan, August 22-26, 2004.

Lipson, A.

A. Lipson and E. M. Yeatman, presented at the International Conference on Optical MEMS, Oulu, Finland, August 1-4, 2005.

Macleod, H. A.

H. A. Macleod, Thin Film Optical Filters, 3rd ed. (Institute of Physics Publishing, 2002), p. 642.

Mateus, C. F. R.

C. F. R. Mateus, C.-H. Chang, L. Chrostowski, S. Yang, D. Sun, R. Pathak, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 14, 819 (2002).
[CrossRef]

Mehregany, M.

Y. Uenishi, M. Tsugai, and M. Mehregany, J. Micromech. Microeng. 5, 305 (1995).
[CrossRef]

Menon, A.

D. Nilsson, S. Jensen, and A. Menon, J. Micromech. Microeng. 13, 57 (2003).
[CrossRef]

Nilsson, D.

D. Nilsson, S. Jensen, and A. Menon, J. Micromech. Microeng. 13, 57 (2003).
[CrossRef]

Panga, S. W.

W. H. Juan and S. W. Panga, J. Vac. Sci. Technol. B 14, 4080 (1996).
[CrossRef]

Pathak, R.

C. F. R. Mateus, C.-H. Chang, L. Chrostowski, S. Yang, D. Sun, R. Pathak, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 14, 819 (2002).
[CrossRef]

Sun, D.

C. F. R. Mateus, C.-H. Chang, L. Chrostowski, S. Yang, D. Sun, R. Pathak, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 14, 819 (2002).
[CrossRef]

Tiwari, S.

J. A. Wahl, J. S. Van Delden, and S. Tiwari, IEEE Photon. Technol. Lett. 16, 1873 (2004).
[CrossRef]

Tsugai, M.

Y. Uenishi, M. Tsugai, and M. Mehregany, J. Micromech. Microeng. 5, 305 (1995).
[CrossRef]

Uenishi, Y.

Y. Uenishi, M. Tsugai, and M. Mehregany, J. Micromech. Microeng. 5, 305 (1995).
[CrossRef]

Van Delden, J. S.

J. A. Wahl, J. S. Van Delden, and S. Tiwari, IEEE Photon. Technol. Lett. 16, 1873 (2004).
[CrossRef]

Wada, K.

Y. Yi, P. Bermel, K. Wada, X. Duan, J. D. Joannopoulos, and L. C. Kimerling, Appl. Phys. Lett. 81, 4112 (2002).
[CrossRef]

Wahl, J. A.

J. A. Wahl, J. S. Van Delden, and S. Tiwari, IEEE Photon. Technol. Lett. 16, 1873 (2004).
[CrossRef]

Yang, S.

C. F. R. Mateus, C.-H. Chang, L. Chrostowski, S. Yang, D. Sun, R. Pathak, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 14, 819 (2002).
[CrossRef]

Yeatman, E. M.

A. Lipson and E. M. Yeatman, presented at the International Conference on Optical MEMS, Oulu, Finland, August 1-4, 2005.

Yi, Y.

Y. Yi, P. Bermel, K. Wada, X. Duan, J. D. Joannopoulos, and L. C. Kimerling, Appl. Phys. Lett. 81, 4112 (2002).
[CrossRef]

You, S.-K.

S.-S. Yun, S.-K. You, and J.-H. Lee, presented at the International Conference on Optical MEMS, Takamatsu, Japan, August 22-26, 2004.

Yun, S.-S.

S.-S. Yun and J.-H. Lee, J. Micromech. Microeng. 13, 721 (2003).
[CrossRef]

S.-S. Yun, S.-K. You, and J.-H. Lee, presented at the International Conference on Optical MEMS, Takamatsu, Japan, August 22-26, 2004.

Zappe, H.

D. Hohlfeld, M. Epmeier, and H. Zappe, Sens. Actuators A 103, 93 (2003).
[CrossRef]

Annu. Rev. Mater. Sci. (1)

D. L. Kendall, Annu. Rev. Mater. Sci. 9, 373 (1979).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Yi, P. Bermel, K. Wada, X. Duan, J. D. Joannopoulos, and L. C. Kimerling, Appl. Phys. Lett. 81, 4112 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

C. F. R. Mateus, C.-H. Chang, L. Chrostowski, S. Yang, D. Sun, R. Pathak, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 14, 819 (2002).
[CrossRef]

J. A. Wahl, J. S. Van Delden, and S. Tiwari, IEEE Photon. Technol. Lett. 16, 1873 (2004).
[CrossRef]

J. Micromech. Microeng. (4)

D. Nilsson, S. Jensen, and A. Menon, J. Micromech. Microeng. 13, 57 (2003).
[CrossRef]

S.-S. Yun and J.-H. Lee, J. Micromech. Microeng. 13, 721 (2003).
[CrossRef]

Y. Uenishi, M. Tsugai, and M. Mehregany, J. Micromech. Microeng. 5, 305 (1995).
[CrossRef]

A. Holke and H. T. Henderson, J. Micromech. Microeng. 9, 51 (1999).
[CrossRef]

J. Vac. Sci. Technol. B (1)

W. H. Juan and S. W. Panga, J. Vac. Sci. Technol. B 14, 4080 (1996).
[CrossRef]

Sens. Actuators A (1)

D. Hohlfeld, M. Epmeier, and H. Zappe, Sens. Actuators A 103, 93 (2003).
[CrossRef]

Other (3)

S.-S. Yun, S.-K. You, and J.-H. Lee, presented at the International Conference on Optical MEMS, Takamatsu, Japan, August 22-26, 2004.

A. Lipson and E. M. Yeatman, presented at the International Conference on Optical MEMS, Oulu, Finland, August 1-4, 2005.

H. A. Macleod, Thin Film Optical Filters, 3rd ed. (Institute of Physics Publishing, 2002), p. 642.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the filter design between two lensed fibers. The filter is viewed as a Fabry–Perot filter with two PBG mirrors. To account for etching imperfection, angle ϑ is introduced.

Fig. 2
Fig. 2

Simulated transmission spectra for incident Gaussian beams with radii of 4, 9, and 31 μ m . The three paired thin-layer m = [ 1 , 1 , 1 , 3 ] mirrors have a very wide passband in comparison to thicker silicon layers m = [ 21 , 5 , 2 , 3 ] . A four paired thin-layer mirror is narrower but very lossy.

Fig. 3
Fig. 3

Calculated filter spectra for a 9 μ m radius incident Gaussian beam and an m = [ 21 , 5 , 2 , 3 ] filter for several etching angles. The experimental results fit well the overall pattern of sidewalls with etch angles of < 0.01 ° .

Fig. 4
Fig. 4

Smooth and vertical surfaces follow a DRIE + KOH process on this 1D PBG m = [ 21 , 5 , 2 , 3 ] filter. Inset, cross section of the vertical bars.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E ̃ out ( λ , ϕ ) = E ̃ in ( λ , ϕ ) t 1 ( λ , ϕ ) p = 0 t 2 ( λ , ϕ p 2 ) exp ( i k L p 2 ) ( q = 0 p 1 { r 2 ( λ , ϕ q 2 ) r 1 ( λ , ϕ q 1 ) exp [ i k ( L q 2 + L q 1 ) ] } ) ,
η ( λ ) = E ̃ out ( λ , ϕ ) , E ̃ fiber ( λ , ϕ ) 2 E ̃ out ( λ , ϕ ) , E ̃ out ( λ , ϕ ) E ̃ fiber ( λ , ϕ ) , E ̃ fiber ( λ , ϕ ) , E 1 , E 2 = E 1 E 2 * d ϕ .
I ( λ ) = η ( λ ) E ̃ out ( λ , ϕ ) , E ̃ out ( λ , ϕ ) E ̃ in ( λ , ϕ ) , E ̃ in ( λ , ϕ ) .

Metrics