Abstract

Using the generalized multiparticle Mie theory, we investigate optical coupling and transport through chains of dielectric microspheres. We identify two distinct coupling mechanisms of optical transport in terms of the coupling efficiency between neighboring microspheres, namely, evanescent coupling and nanojet coupling. We demonstrate that perfect whispering gallery mode propagation through a chain of evanescently coupled microspheres can be achieved. However, optical coupling and transport through a chain of nanojet-inducing microspheres is less efficient due to the radiative nature of photonic nanojets. Understanding these two optical coupling mechanisms is critical for selecting appropriate microspheres to build coupled resonator optical waveguides and other photon-manipulation devices for effective and low-loss guiding of photons.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Owen, R. K. Chang, and P. W. Barber, Opt. Lett. 6, 540 (1981).
    [CrossRef] [PubMed]
  2. D. S. Benincasa, P. W. Barber, J.-Z. Zhang, W.-F. Hsieh, and R. K. Chang, Appl. Opt. 26, 1348 (1987).
    [CrossRef] [PubMed]
  3. Z. Chen, A. Taflove, and V. Backman, Opt. Express 12, 1214 (2004).
    [CrossRef] [PubMed]
  4. S. Deng, W. Cai, and V. N. Astratov, Opt. Express 12, 6468 (2004).
    [CrossRef] [PubMed]
  5. R. K. Chang and A. J. Campillo, Optical Processes in Microcavities (World Scientific, 1996).
    [CrossRef]
  6. N. Stefanou and A. Modinos, Phys. Rev. B 57, 12 127 (1998).
    [CrossRef]
  7. E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, Phys. Rev. Lett. 81, 1405 (1998).
    [CrossRef]
  8. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, Opt. Lett. 24, 711 (1999).
    [CrossRef]
  9. T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, Phys. Rev. Lett. 82, 4623 (1999).
    [CrossRef]
  10. V. N. Astratov, J. P. Franchak, and S. P. Ashili, Appl. Phys. Lett. 85, 5508 (2004).
    [CrossRef]
  11. Y.-L. Xu, Appl. Opt. 34, 4573 (1995).
    [CrossRef] [PubMed]
  12. V. Yannopapas, A. Modinos, and N. Stefanou, Phys. Rev. B 65, 235201 (2002).
    [CrossRef]

2004

2002

V. Yannopapas, A. Modinos, and N. Stefanou, Phys. Rev. B 65, 235201 (2002).
[CrossRef]

1999

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, Opt. Lett. 24, 711 (1999).
[CrossRef]

T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, Phys. Rev. Lett. 82, 4623 (1999).
[CrossRef]

1998

N. Stefanou and A. Modinos, Phys. Rev. B 57, 12 127 (1998).
[CrossRef]

E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, Phys. Rev. Lett. 81, 1405 (1998).
[CrossRef]

1995

1987

1981

Ashili, S. P.

V. N. Astratov, J. P. Franchak, and S. P. Ashili, Appl. Phys. Lett. 85, 5508 (2004).
[CrossRef]

Astratov, V. N.

V. N. Astratov, J. P. Franchak, and S. P. Ashili, Appl. Phys. Lett. 85, 5508 (2004).
[CrossRef]

S. Deng, W. Cai, and V. N. Astratov, Opt. Express 12, 6468 (2004).
[CrossRef] [PubMed]

Backman, V.

Barber, P. W.

Benincasa, D. S.

Cai, W.

Campillo, A. J.

R. K. Chang and A. J. Campillo, Optical Processes in Microcavities (World Scientific, 1996).
[CrossRef]

Chang, R. K.

Chen, Z.

Deng, S.

Economou, E. N.

E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, Phys. Rev. Lett. 81, 1405 (1998).
[CrossRef]

Franchak, J. P.

V. N. Astratov, J. P. Franchak, and S. P. Ashili, Appl. Phys. Lett. 85, 5508 (2004).
[CrossRef]

Hsieh, W.-F.

Jimba, Y.

T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, Phys. Rev. Lett. 82, 4623 (1999).
[CrossRef]

Kuwata-Gonokami, M.

T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, Phys. Rev. Lett. 82, 4623 (1999).
[CrossRef]

Lee, R. K.

Lidorikis, E.

E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, Phys. Rev. Lett. 81, 1405 (1998).
[CrossRef]

Miyazaki, H.

T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, Phys. Rev. Lett. 82, 4623 (1999).
[CrossRef]

Modinos, A.

V. Yannopapas, A. Modinos, and N. Stefanou, Phys. Rev. B 65, 235201 (2002).
[CrossRef]

N. Stefanou and A. Modinos, Phys. Rev. B 57, 12 127 (1998).
[CrossRef]

Mukaiyama, T.

T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, Phys. Rev. Lett. 82, 4623 (1999).
[CrossRef]

Owen, J. F.

Scherer, A.

Sigalas, M. M.

E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, Phys. Rev. Lett. 81, 1405 (1998).
[CrossRef]

Soukoulis, C. M.

E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, Phys. Rev. Lett. 81, 1405 (1998).
[CrossRef]

Stefanou, N.

V. Yannopapas, A. Modinos, and N. Stefanou, Phys. Rev. B 65, 235201 (2002).
[CrossRef]

N. Stefanou and A. Modinos, Phys. Rev. B 57, 12 127 (1998).
[CrossRef]

Taflove, A.

Takeda, K.

T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, Phys. Rev. Lett. 82, 4623 (1999).
[CrossRef]

Xu, Y.

Xu, Y.-L.

Yannopapas, V.

V. Yannopapas, A. Modinos, and N. Stefanou, Phys. Rev. B 65, 235201 (2002).
[CrossRef]

Yariv, A.

Zhang, J.-Z.

Appl. Opt.

Appl. Phys. Lett.

V. N. Astratov, J. P. Franchak, and S. P. Ashili, Appl. Phys. Lett. 85, 5508 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

V. Yannopapas, A. Modinos, and N. Stefanou, Phys. Rev. B 65, 235201 (2002).
[CrossRef]

N. Stefanou and A. Modinos, Phys. Rev. B 57, 12 127 (1998).
[CrossRef]

Phys. Rev. Lett.

E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, Phys. Rev. Lett. 81, 1405 (1998).
[CrossRef]

T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, Phys. Rev. Lett. 82, 4623 (1999).
[CrossRef]

Other

R. K. Chang and A. J. Campillo, Optical Processes in Microcavities (World Scientific, 1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Visualization of a photonic nanojet emerging at the shadow-side surface (blue circle) of a dielectric microsphere of diameter d = 3 μ m that has a refractive index of 1.59 and is illuminated by a plane wave ( λ = 400 nm ) . The electric field intensity (normalized to the incident intensity) is visualized on the meridian plane. (b) Visualization of an evanescent wave emerging at the shadow-side surface (blue circle) of a dielectric microsphere of diameter d = 3 μ m that has a refractive index of 1.8 and is illuminated by a plane wave ( λ = 400 nm ) .

Fig. 2
Fig. 2

(a) Electric field intensity distribution of a chain of five touching microspheres that have a refractive index of 1.59 and a diameter of 3 μ m . Light of wavelength λ = 429.069 nm propagates from left to right. (b) Peak intensity of each constituent sphere as a function of the distance between their centers.

Fig. 3
Fig. 3

(a) Electric field intensity distribution of a chain of five touching microspheres that have a refractive index of 1.8 and a diameter of 3 μ m . Light of wavelength λ = 430.889 nm propagates from left to right. (b) Peak intensity of each constituent sphere as a function of the distance between their centers.

Fig. 4
Fig. 4

(a) Electric field intensity distribution of a bent chain of five touching microspheres with a rake of 90° that have a refractive index of 1.8 and a diameter of 3 μ m . Light of wavelength λ = 431 nm propagates from left to right. (b) Peak intensity of each constituent sphere as a function of the distance between their centers.

Metrics