Abstract

Communications wavelength waveguide mode conversion is demonstrated in an irregular metal-walled structure that was designed by using multiresolution optimization. Strong scatter and a large number of degrees of freedom allowed high-efficiency conversion in a device having a length of just a few wavelengths. The fabrication approach draws on standard semiconductor processing. Mode-selective reflectors, splitters, phase shifters, and other elements can be achieved by using this principle.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, J. Opt. Soc. Am. B 10, 283 (1993).
    [Crossref]
  2. J. D. Joannopoulos, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).
  3. A. Niv, G. Biener, V. Kleiner, and E. Hasman, Opt. Lett. 28, 510 (2003).
    [Crossref] [PubMed]
  4. U. Levy, H. Kim, C. Tsai, and Y. Fainman, Opt. Lett. 30, 2089 (2005).
    [Crossref] [PubMed]
  5. M. Yang, J. Li, and K. J. Webb, Appl. Phys. Lett. 14, 2736 (2003).
    [Crossref]
  6. M. Yang, J. Li, and K. J. Webb, IEEE Trans. Microwave Theory Tech. 52, 121 (2004).
    [Crossref]

2005 (1)

2004 (1)

M. Yang, J. Li, and K. J. Webb, IEEE Trans. Microwave Theory Tech. 52, 121 (2004).
[Crossref]

2003 (2)

1993 (1)

Biener, G.

Fainman, Y.

Hasman, E.

Joannopoulos, J. D.

J. D. Joannopoulos, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).

Kim, H.

Kleiner, V.

Levy, U.

Li, J.

M. Yang, J. Li, and K. J. Webb, IEEE Trans. Microwave Theory Tech. 52, 121 (2004).
[Crossref]

M. Yang, J. Li, and K. J. Webb, Appl. Phys. Lett. 14, 2736 (2003).
[Crossref]

Niv, A.

Tsai, C.

Webb, K. J.

M. Yang, J. Li, and K. J. Webb, IEEE Trans. Microwave Theory Tech. 52, 121 (2004).
[Crossref]

M. Yang, J. Li, and K. J. Webb, Appl. Phys. Lett. 14, 2736 (2003).
[Crossref]

Yablonovitch, E.

Yang, M.

M. Yang, J. Li, and K. J. Webb, IEEE Trans. Microwave Theory Tech. 52, 121 (2004).
[Crossref]

M. Yang, J. Li, and K. J. Webb, Appl. Phys. Lett. 14, 2736 (2003).
[Crossref]

Appl. Phys. Lett. (1)

M. Yang, J. Li, and K. J. Webb, Appl. Phys. Lett. 14, 2736 (2003).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

M. Yang, J. Li, and K. J. Webb, IEEE Trans. Microwave Theory Tech. 52, 121 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Other (1)

J. D. Joannopoulos, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(Color online) (a) Mode conversion schematic. NSOM, near-field scanning optical microscope. (b) 1550 nm TE 10 - to - TE 30 mode converter design, with the incident field from the left.

Fig. 2
Fig. 2

(Color online) (a) SEM photo before Ag sputtering. (b) Microscope photograph after Ag sputtering, with the fiber probe coordinates.

Fig. 3
Fig. 3

(Color online) (a) Two-dimensional NSOM scan at λ = 1550 nm : Δ X is the distance across the output aperture, and Δ Y is the vertical displacement from the substrate. (b) Simulation at Z = 3 μ m . The data shown as white curves in both (a) and (b) were used to fit the mode content.

Fig. 4
Fig. 4

(Color online) Measured data (crosses) and simulation (dashed curve), corresponding to the white curves in Fig. 3.

Fig. 5
Fig. 5

(Color online) Simulated mode content: TE 30 mode (solid), TE 10 mode (dashed). The fitted result from the measurement is shown as crosses ( TE 30 ) and circles ( TE 10 ) .

Metrics