Abstract

Spectrally resolved bioluminescence optical tomography is an approach to recover images of luciferase activity within a volume using multiwavelength emission data from internal bioluminescence sources. The underlying problem of uniqueness associated with nonspectrally resolved intensity-based bioluminescence tomography is highlighted. Reconstructed images of bioluminescence are presented by using as input both simulated and real multiwavelength data from a tissue-simulating phantom. The location of the internal bioluminescence is obtained with 1mm accuracy. Further, the amplitude of the reconstructed source is proportional to the actual bioluminescence intensity.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Contag and B. D. Ross, J. Magn. Reson Imaging 16, 378 (2002).
    [CrossRef] [PubMed]
  2. M. R. Hamblin, D. A. O'Donnell, N. Murthy, C. H. Contag, and T. Hasan, Photochem. Photobiol. 75, 51 (2002).
    [CrossRef] [PubMed]
  3. J. Hardy, M. Edinger, M. H. Bachmann, R. S. Negrin, C. G. Fathman, and C. H. Contag, Exp. Hematol. 29, 1353 (2001).
    [CrossRef] [PubMed]
  4. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, Phys. Med. Biol. 50, 4225 (2005).
    [CrossRef] [PubMed]
  5. X. Gu, Q. Zhang, L. Larcom, and H. Jiang, Opt. Express 12, 3996 (2004).
    [CrossRef] [PubMed]
  6. G. Wang, Y. Li, and M. Jiang, Med. Phys. 31, 2289 (2004).
    [CrossRef] [PubMed]
  7. C. H. Contag and M. H. Bachmann, Annu. Rev. Biomed. Eng. 4, 235 (2002).
    [CrossRef] [PubMed]
  8. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, Appl. Opt. 44, 1858 (2003).
    [CrossRef]

2005

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, Phys. Med. Biol. 50, 4225 (2005).
[CrossRef] [PubMed]

2004

2003

2002

C. H. Contag and B. D. Ross, J. Magn. Reson Imaging 16, 378 (2002).
[CrossRef] [PubMed]

M. R. Hamblin, D. A. O'Donnell, N. Murthy, C. H. Contag, and T. Hasan, Photochem. Photobiol. 75, 51 (2002).
[CrossRef] [PubMed]

C. H. Contag and M. H. Bachmann, Annu. Rev. Biomed. Eng. 4, 235 (2002).
[CrossRef] [PubMed]

2001

J. Hardy, M. Edinger, M. H. Bachmann, R. S. Negrin, C. G. Fathman, and C. H. Contag, Exp. Hematol. 29, 1353 (2001).
[CrossRef] [PubMed]

Alexandrakis, G.

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, Phys. Med. Biol. 50, 4225 (2005).
[CrossRef] [PubMed]

Bachmann, M. H.

C. H. Contag and M. H. Bachmann, Annu. Rev. Biomed. Eng. 4, 235 (2002).
[CrossRef] [PubMed]

J. Hardy, M. Edinger, M. H. Bachmann, R. S. Negrin, C. G. Fathman, and C. H. Contag, Exp. Hematol. 29, 1353 (2001).
[CrossRef] [PubMed]

Chatziioannou, A. F.

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, Phys. Med. Biol. 50, 4225 (2005).
[CrossRef] [PubMed]

Contag, C. H.

C. H. Contag and B. D. Ross, J. Magn. Reson Imaging 16, 378 (2002).
[CrossRef] [PubMed]

M. R. Hamblin, D. A. O'Donnell, N. Murthy, C. H. Contag, and T. Hasan, Photochem. Photobiol. 75, 51 (2002).
[CrossRef] [PubMed]

C. H. Contag and M. H. Bachmann, Annu. Rev. Biomed. Eng. 4, 235 (2002).
[CrossRef] [PubMed]

J. Hardy, M. Edinger, M. H. Bachmann, R. S. Negrin, C. G. Fathman, and C. H. Contag, Exp. Hematol. 29, 1353 (2001).
[CrossRef] [PubMed]

Dehghani, H.

Edinger, M.

J. Hardy, M. Edinger, M. H. Bachmann, R. S. Negrin, C. G. Fathman, and C. H. Contag, Exp. Hematol. 29, 1353 (2001).
[CrossRef] [PubMed]

Fathman, C. G.

J. Hardy, M. Edinger, M. H. Bachmann, R. S. Negrin, C. G. Fathman, and C. H. Contag, Exp. Hematol. 29, 1353 (2001).
[CrossRef] [PubMed]

Gu, X.

Hamblin, M. R.

M. R. Hamblin, D. A. O'Donnell, N. Murthy, C. H. Contag, and T. Hasan, Photochem. Photobiol. 75, 51 (2002).
[CrossRef] [PubMed]

Hardy, J.

J. Hardy, M. Edinger, M. H. Bachmann, R. S. Negrin, C. G. Fathman, and C. H. Contag, Exp. Hematol. 29, 1353 (2001).
[CrossRef] [PubMed]

Hasan, T.

M. R. Hamblin, D. A. O'Donnell, N. Murthy, C. H. Contag, and T. Hasan, Photochem. Photobiol. 75, 51 (2002).
[CrossRef] [PubMed]

Jiang, H.

Jiang, M.

G. Wang, Y. Li, and M. Jiang, Med. Phys. 31, 2289 (2004).
[CrossRef] [PubMed]

Jiang, S.

Larcom, L.

Li, Y.

G. Wang, Y. Li, and M. Jiang, Med. Phys. 31, 2289 (2004).
[CrossRef] [PubMed]

Murthy, N.

M. R. Hamblin, D. A. O'Donnell, N. Murthy, C. H. Contag, and T. Hasan, Photochem. Photobiol. 75, 51 (2002).
[CrossRef] [PubMed]

Negrin, R. S.

J. Hardy, M. Edinger, M. H. Bachmann, R. S. Negrin, C. G. Fathman, and C. H. Contag, Exp. Hematol. 29, 1353 (2001).
[CrossRef] [PubMed]

O'Donnell, D. A.

M. R. Hamblin, D. A. O'Donnell, N. Murthy, C. H. Contag, and T. Hasan, Photochem. Photobiol. 75, 51 (2002).
[CrossRef] [PubMed]

Paulsen, K. D.

Pogue, B. W.

Rannou, F. R.

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, Phys. Med. Biol. 50, 4225 (2005).
[CrossRef] [PubMed]

Ross, B. D.

C. H. Contag and B. D. Ross, J. Magn. Reson Imaging 16, 378 (2002).
[CrossRef] [PubMed]

Srinivasan, S.

Wang, G.

G. Wang, Y. Li, and M. Jiang, Med. Phys. 31, 2289 (2004).
[CrossRef] [PubMed]

Zhang, Q.

Annu. Rev. Biomed. Eng.

C. H. Contag and M. H. Bachmann, Annu. Rev. Biomed. Eng. 4, 235 (2002).
[CrossRef] [PubMed]

Appl. Opt.

Exp. Hematol.

J. Hardy, M. Edinger, M. H. Bachmann, R. S. Negrin, C. G. Fathman, and C. H. Contag, Exp. Hematol. 29, 1353 (2001).
[CrossRef] [PubMed]

J. Magn. Reson Imaging

C. H. Contag and B. D. Ross, J. Magn. Reson Imaging 16, 378 (2002).
[CrossRef] [PubMed]

Med. Phys.

G. Wang, Y. Li, and M. Jiang, Med. Phys. 31, 2289 (2004).
[CrossRef] [PubMed]

Opt. Express

Photochem. Photobiol.

M. R. Hamblin, D. A. O'Donnell, N. Murthy, C. H. Contag, and T. Hasan, Photochem. Photobiol. 75, 51 (2002).
[CrossRef] [PubMed]

Phys. Med. Biol.

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, Phys. Med. Biol. 50, 4225 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic of the 2D bioluminescence model of 20 mm radius used to generate simulated data. (b) Boundary bioluminescence data generated for each wavelength by using the optical properties as shown in (c).

Fig. 2
Fig. 2

Reconstructed images of bioluminescence using (a) single and (b)–(e) multiwavelength noisy data. (f) Plot of calculated bioluminescence values versus true strength.

Fig. 3
Fig. 3

Reconstructed image of bioluminescence by using multiwavelength measured phantom data.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

D ( r ) Φ ( r ) + μ a Φ ( r ) = B ( r ) ,
χ ̂ = arg min μ a , κ ( y F [ B ( r ) ] ) ,

Metrics