Abstract

A blue solid-state laser material based on 4,4 dibenzyl carbamido stilbene-2,2 disulfonic acid incorporated into solgel zirconia and inorganic–organic hybrid matrices is presented. The absorption maxima of the dye in various matrices are around 339–361 nm, and the broad fluorescence peaks are at 411–413 nm. Optical gain measurements using the variable stripe method show amplified spontaneous emission peaking at 437 nm.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Reisfeld, in Optical and Electronic Phenomena in Sol-Gel Glasses and Modern Applications, R.Reisfeld and C.K.Jorgensen, eds., Vol. 85 of Structure and Bonding (Springer, 1996), pp. 215-233.
    [Crossref]
  2. E. Yariv, S. Schultheiss, T. Saraidarov, and R. Reisfeld, Opt. Mater. 16, 29 (2001).
    [Crossref]
  3. R. Gvishi, G. S. He, P. N. Prasad, U. Narang, M. Li, F. V. Bright, B. A. Reinhardt, J. C. Bhatt, and A. G. Dillard, Appl. Spectrosc. 49, 834 (1995).
    [Crossref]
  4. R. Reisfeld, in Handbook of Sol-Gel Technology, S.Sakka, ed. (Springer, 2004), Vol. 3, Chap. 12, pp. 239-261.
  5. R. Reisfeld, A. Weiss, T. Saraidarov, E. Yariv, and A. A. Ishchenko, Polym. Adv. Technol. 15, 291 (2004).
    [Crossref]
  6. K. Maruszewski, J. Mol. Struct. 479, 53 (1999).
    [Crossref]
  7. E. Stathatos, P. Lianos, U. L. Stranger, and B. Orel, Chem. Phys. Lett. 345, 381 (2001).
    [Crossref]
  8. T. Saraidarov, R. Reisfeld, and M. Pietraszkiewicz, Chin. Phys. Lasers 330, 515 (2000).
    [Crossref]
  9. K.-S. Lam, D. Lo, and K. H. Wong, Appl. Opt. 34, 3380 (1995).
    [Crossref] [PubMed]
  10. T. M. Saraidarov and B. I. Chikvaidze, "Composition for obtaining polarizer filter in the UV range," author's testimony, USSR patent 1748430 (1992).
  11. B. I. Stepanov, Introduction to Organic Dyes Chemistry and Technology (Khimiya, 1977), pp. 315, 325.
  12. K. L. Shaklee, R. E. Nahory, and R. F. Leheny, J. Lumin. 7, 284 (1973).
    [Crossref]

2004 (1)

R. Reisfeld, A. Weiss, T. Saraidarov, E. Yariv, and A. A. Ishchenko, Polym. Adv. Technol. 15, 291 (2004).
[Crossref]

2001 (2)

E. Yariv, S. Schultheiss, T. Saraidarov, and R. Reisfeld, Opt. Mater. 16, 29 (2001).
[Crossref]

E. Stathatos, P. Lianos, U. L. Stranger, and B. Orel, Chem. Phys. Lett. 345, 381 (2001).
[Crossref]

2000 (1)

T. Saraidarov, R. Reisfeld, and M. Pietraszkiewicz, Chin. Phys. Lasers 330, 515 (2000).
[Crossref]

1999 (1)

K. Maruszewski, J. Mol. Struct. 479, 53 (1999).
[Crossref]

1995 (2)

1973 (1)

K. L. Shaklee, R. E. Nahory, and R. F. Leheny, J. Lumin. 7, 284 (1973).
[Crossref]

Bhatt, J. C.

Bright, F. V.

Chikvaidze, B. I.

T. M. Saraidarov and B. I. Chikvaidze, "Composition for obtaining polarizer filter in the UV range," author's testimony, USSR patent 1748430 (1992).

Dillard, A. G.

Gvishi, R.

He, G. S.

Ishchenko, A. A.

R. Reisfeld, A. Weiss, T. Saraidarov, E. Yariv, and A. A. Ishchenko, Polym. Adv. Technol. 15, 291 (2004).
[Crossref]

Lam, K.-S.

Leheny, R. F.

K. L. Shaklee, R. E. Nahory, and R. F. Leheny, J. Lumin. 7, 284 (1973).
[Crossref]

Li, M.

Lianos, P.

E. Stathatos, P. Lianos, U. L. Stranger, and B. Orel, Chem. Phys. Lett. 345, 381 (2001).
[Crossref]

Lo, D.

Maruszewski, K.

K. Maruszewski, J. Mol. Struct. 479, 53 (1999).
[Crossref]

Nahory, R. E.

K. L. Shaklee, R. E. Nahory, and R. F. Leheny, J. Lumin. 7, 284 (1973).
[Crossref]

Narang, U.

Orel, B.

E. Stathatos, P. Lianos, U. L. Stranger, and B. Orel, Chem. Phys. Lett. 345, 381 (2001).
[Crossref]

Pietraszkiewicz, M.

T. Saraidarov, R. Reisfeld, and M. Pietraszkiewicz, Chin. Phys. Lasers 330, 515 (2000).
[Crossref]

Prasad, P. N.

Reinhardt, B. A.

Reisfeld, R.

R. Reisfeld, A. Weiss, T. Saraidarov, E. Yariv, and A. A. Ishchenko, Polym. Adv. Technol. 15, 291 (2004).
[Crossref]

E. Yariv, S. Schultheiss, T. Saraidarov, and R. Reisfeld, Opt. Mater. 16, 29 (2001).
[Crossref]

T. Saraidarov, R. Reisfeld, and M. Pietraszkiewicz, Chin. Phys. Lasers 330, 515 (2000).
[Crossref]

R. Reisfeld, in Handbook of Sol-Gel Technology, S.Sakka, ed. (Springer, 2004), Vol. 3, Chap. 12, pp. 239-261.

R. Reisfeld, in Optical and Electronic Phenomena in Sol-Gel Glasses and Modern Applications, R.Reisfeld and C.K.Jorgensen, eds., Vol. 85 of Structure and Bonding (Springer, 1996), pp. 215-233.
[Crossref]

Saraidarov, T.

R. Reisfeld, A. Weiss, T. Saraidarov, E. Yariv, and A. A. Ishchenko, Polym. Adv. Technol. 15, 291 (2004).
[Crossref]

E. Yariv, S. Schultheiss, T. Saraidarov, and R. Reisfeld, Opt. Mater. 16, 29 (2001).
[Crossref]

T. Saraidarov, R. Reisfeld, and M. Pietraszkiewicz, Chin. Phys. Lasers 330, 515 (2000).
[Crossref]

Saraidarov, T. M.

T. M. Saraidarov and B. I. Chikvaidze, "Composition for obtaining polarizer filter in the UV range," author's testimony, USSR patent 1748430 (1992).

Schultheiss, S.

E. Yariv, S. Schultheiss, T. Saraidarov, and R. Reisfeld, Opt. Mater. 16, 29 (2001).
[Crossref]

Shaklee, K. L.

K. L. Shaklee, R. E. Nahory, and R. F. Leheny, J. Lumin. 7, 284 (1973).
[Crossref]

Stathatos, E.

E. Stathatos, P. Lianos, U. L. Stranger, and B. Orel, Chem. Phys. Lett. 345, 381 (2001).
[Crossref]

Stepanov, B. I.

B. I. Stepanov, Introduction to Organic Dyes Chemistry and Technology (Khimiya, 1977), pp. 315, 325.

Stranger, U. L.

E. Stathatos, P. Lianos, U. L. Stranger, and B. Orel, Chem. Phys. Lett. 345, 381 (2001).
[Crossref]

Weiss, A.

R. Reisfeld, A. Weiss, T. Saraidarov, E. Yariv, and A. A. Ishchenko, Polym. Adv. Technol. 15, 291 (2004).
[Crossref]

Wong, K. H.

Yariv, E.

R. Reisfeld, A. Weiss, T. Saraidarov, E. Yariv, and A. A. Ishchenko, Polym. Adv. Technol. 15, 291 (2004).
[Crossref]

E. Yariv, S. Schultheiss, T. Saraidarov, and R. Reisfeld, Opt. Mater. 16, 29 (2001).
[Crossref]

Appl. Opt. (1)

Appl. Spectrosc. (1)

Chem. Phys. Lett. (1)

E. Stathatos, P. Lianos, U. L. Stranger, and B. Orel, Chem. Phys. Lett. 345, 381 (2001).
[Crossref]

Chin. Phys. Lasers (1)

T. Saraidarov, R. Reisfeld, and M. Pietraszkiewicz, Chin. Phys. Lasers 330, 515 (2000).
[Crossref]

J. Lumin. (1)

K. L. Shaklee, R. E. Nahory, and R. F. Leheny, J. Lumin. 7, 284 (1973).
[Crossref]

J. Mol. Struct. (1)

K. Maruszewski, J. Mol. Struct. 479, 53 (1999).
[Crossref]

Opt. Mater. (1)

E. Yariv, S. Schultheiss, T. Saraidarov, and R. Reisfeld, Opt. Mater. 16, 29 (2001).
[Crossref]

Polym. Adv. Technol. (1)

R. Reisfeld, A. Weiss, T. Saraidarov, E. Yariv, and A. A. Ishchenko, Polym. Adv. Technol. 15, 291 (2004).
[Crossref]

Other (4)

R. Reisfeld, in Optical and Electronic Phenomena in Sol-Gel Glasses and Modern Applications, R.Reisfeld and C.K.Jorgensen, eds., Vol. 85 of Structure and Bonding (Springer, 1996), pp. 215-233.
[Crossref]

R. Reisfeld, in Handbook of Sol-Gel Technology, S.Sakka, ed. (Springer, 2004), Vol. 3, Chap. 12, pp. 239-261.

T. M. Saraidarov and B. I. Chikvaidze, "Composition for obtaining polarizer filter in the UV range," author's testimony, USSR patent 1748430 (1992).

B. I. Stepanov, Introduction to Organic Dyes Chemistry and Technology (Khimiya, 1977), pp. 315, 325.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Molecular structure of 4, 4 dibenzyl carbamido stilbene- 2 , 2 disulfonic acid, or Direct White (DW).

Fig. 2
Fig. 2

Linear molar absorption coefficient of DW in (a) water and (b) dimethyl formamide.

Fig. 3
Fig. 3

Excitation (solid curve), emission (dashed curve), and absorption (dotted–dashed curve) spectra of DW in DMFA.

Fig. 4
Fig. 4

Emission and excitation spectra of DW incorporated in (a) zirconia, (b) zirconia–glymo, and (c) ZSUR thin films.

Fig. 5
Fig. 5

ASE spectra at different stripe lengths taken with an excitation power of 5 × 10 6 W cm 2 . The stripe lengths from bottom to top are 50, 250, 650, and 1050 μ m , respectively. ASE is manifested by emission line narrowing at 437 nm. Inset, absorption spectrum of the film.

Fig. 6
Fig. 6

ASE intensity as a function of stripe length, showing an exponential increase at the onset of gain. The gain factor extracted from the fit described in the text (solid curve) gives a value of 14 cm 1 . Inset, schematic diagram showing the experimental setup for the optical gain measurements. The excitation source is a doubled frequency, 5 ns Nd:YAG laser. The excitation beam is focused into a stripe by a cylindrical lens, a, and the stripe length is controlled by an adjustable barrier, b. The signal is collected from the edge of the film into a monochromator coupled to a CCD detector.

Tables (1)

Tables Icon

Table 1 DW Dye Optical Properties in Various Solgel Matrices

Metrics