Abstract

We report on a new type of single-point velocimetry microsensor that can be positioned in microfluidic devices by use of optical tweezers. The flag-shaped microsensor is readily made by a low-cost two-photon polymerization technique. At rest the linearly polarized optical tweezer traps the microsensor at the focal point, and the flag-plate gets aligned in the polarization direction. Under a fluid flow, the plate rotates to an equilibrium angle that is used to measure the fluid velocity with a micrometer-size spatial resolution. Experimental results are in good agreement with theoretical calculations of optical and hydrodynamic torques on such a flag-shaped microsensor.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. D. Bonin, B. Kourmanov, and T. G. Walker, Opt. Express 10, 984 (2002).
    [PubMed]
  2. P. Galadja and P. Ormos, Opt. Express 11, 446 (2003).
    [CrossRef]
  3. S. Bayoudh, M. Mehta, H. Rubinsztein-Dunlop, N. R. Heckenberg, and C. Critchley, J. Microsc. 203, 214 (2001).
    [CrossRef] [PubMed]
  4. J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, Opt. Express 12, 1179 (2004).
    [CrossRef] [PubMed]
  5. P. Galajda and P. Ormos, Appl. Phys. Lett. 78, 249 (2001).
    [CrossRef]
  6. J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, Exp. Fluids 25, 316 (1998).
    [CrossRef]
  7. Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, Opt. Lett. 22, 64 (1997).
    [CrossRef] [PubMed]
  8. M. Brinkmeier and R. Rigler, Exp. Tech. Phys. (Lemgo, Ger.) 41, 205 (1996).
  9. J. R. Kurz, A. M. Schober, D. S. Hum, A. J. Saltzman, and M. M. Fejer, IEEE J. Sel. Top. Quantum Electron. 8, 660 (2002).
    [CrossRef]
  10. I. Wang, M. Bouriau, P. L. Baldeck, C. Martineau, and C. Andraud, Opt. Lett. 27, 1348 (2002).
    [CrossRef]
  11. L. Landau and E. M. Lifshitz, Quantum Electrodynamics (Pergamon, 1982).

2004 (1)

2003 (1)

2002 (3)

2001 (2)

S. Bayoudh, M. Mehta, H. Rubinsztein-Dunlop, N. R. Heckenberg, and C. Critchley, J. Microsc. 203, 214 (2001).
[CrossRef] [PubMed]

P. Galajda and P. Ormos, Appl. Phys. Lett. 78, 249 (2001).
[CrossRef]

1998 (1)

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, Exp. Fluids 25, 316 (1998).
[CrossRef]

1997 (1)

1996 (1)

M. Brinkmeier and R. Rigler, Exp. Tech. Phys. (Lemgo, Ger.) 41, 205 (1996).

Adrian, R. J.

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, Exp. Fluids 25, 316 (1998).
[CrossRef]

Andraud, C.

Baldeck, P. L.

Bayoudh, S.

S. Bayoudh, M. Mehta, H. Rubinsztein-Dunlop, N. R. Heckenberg, and C. Critchley, J. Microsc. 203, 214 (2001).
[CrossRef] [PubMed]

Beebe, D. J.

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, Exp. Fluids 25, 316 (1998).
[CrossRef]

Bonin, K. D.

Bouriau, M.

Brinkmeier, M.

M. Brinkmeier and R. Rigler, Exp. Tech. Phys. (Lemgo, Ger.) 41, 205 (1996).

Chen, Z.

Critchley, C.

S. Bayoudh, M. Mehta, H. Rubinsztein-Dunlop, N. R. Heckenberg, and C. Critchley, J. Microsc. 203, 214 (2001).
[CrossRef] [PubMed]

Dave, D.

Dharmadhikari, A. K.

Dharmadhikari, J. A.

Fejer, M. M.

J. R. Kurz, A. M. Schober, D. S. Hum, A. J. Saltzman, and M. M. Fejer, IEEE J. Sel. Top. Quantum Electron. 8, 660 (2002).
[CrossRef]

Galadja, P.

Galajda, P.

P. Galajda and P. Ormos, Appl. Phys. Lett. 78, 249 (2001).
[CrossRef]

Heckenberg, N. R.

S. Bayoudh, M. Mehta, H. Rubinsztein-Dunlop, N. R. Heckenberg, and C. Critchley, J. Microsc. 203, 214 (2001).
[CrossRef] [PubMed]

Hum, D. S.

J. R. Kurz, A. M. Schober, D. S. Hum, A. J. Saltzman, and M. M. Fejer, IEEE J. Sel. Top. Quantum Electron. 8, 660 (2002).
[CrossRef]

Kourmanov, B.

Kurz, J. R.

J. R. Kurz, A. M. Schober, D. S. Hum, A. J. Saltzman, and M. M. Fejer, IEEE J. Sel. Top. Quantum Electron. 8, 660 (2002).
[CrossRef]

Landau, L.

L. Landau and E. M. Lifshitz, Quantum Electrodynamics (Pergamon, 1982).

Lifshitz, E. M.

L. Landau and E. M. Lifshitz, Quantum Electrodynamics (Pergamon, 1982).

Martineau, C.

Mathur, D.

Mehta, M.

S. Bayoudh, M. Mehta, H. Rubinsztein-Dunlop, N. R. Heckenberg, and C. Critchley, J. Microsc. 203, 214 (2001).
[CrossRef] [PubMed]

Meinhart, C. D.

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, Exp. Fluids 25, 316 (1998).
[CrossRef]

Milner, T. E.

Nelson, J. S.

Ormos, P.

P. Galadja and P. Ormos, Opt. Express 11, 446 (2003).
[CrossRef]

P. Galajda and P. Ormos, Appl. Phys. Lett. 78, 249 (2001).
[CrossRef]

Rigler, R.

M. Brinkmeier and R. Rigler, Exp. Tech. Phys. (Lemgo, Ger.) 41, 205 (1996).

Roy, S.

Rubinsztein-Dunlop, H.

S. Bayoudh, M. Mehta, H. Rubinsztein-Dunlop, N. R. Heckenberg, and C. Critchley, J. Microsc. 203, 214 (2001).
[CrossRef] [PubMed]

Saltzman, A. J.

J. R. Kurz, A. M. Schober, D. S. Hum, A. J. Saltzman, and M. M. Fejer, IEEE J. Sel. Top. Quantum Electron. 8, 660 (2002).
[CrossRef]

Santiago, J. G.

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, Exp. Fluids 25, 316 (1998).
[CrossRef]

Schober, A. M.

J. R. Kurz, A. M. Schober, D. S. Hum, A. J. Saltzman, and M. M. Fejer, IEEE J. Sel. Top. Quantum Electron. 8, 660 (2002).
[CrossRef]

Sharma, S.

Walker, T. G.

Wang, I.

Wereley, S. T.

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, Exp. Fluids 25, 316 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

P. Galajda and P. Ormos, Appl. Phys. Lett. 78, 249 (2001).
[CrossRef]

Exp. Fluids (1)

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, Exp. Fluids 25, 316 (1998).
[CrossRef]

Exp. Tech. Phys. (Lemgo, Ger.) (1)

M. Brinkmeier and R. Rigler, Exp. Tech. Phys. (Lemgo, Ger.) 41, 205 (1996).

IEEE J. Sel. Top. Quantum Electron. (1)

J. R. Kurz, A. M. Schober, D. S. Hum, A. J. Saltzman, and M. M. Fejer, IEEE J. Sel. Top. Quantum Electron. 8, 660 (2002).
[CrossRef]

J. Microsc. (1)

S. Bayoudh, M. Mehta, H. Rubinsztein-Dunlop, N. R. Heckenberg, and C. Critchley, J. Microsc. 203, 214 (2001).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Other (1)

L. Landau and E. M. Lifshitz, Quantum Electrodynamics (Pergamon, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Scanning electron microscopy photo of a flag-type velocimetry microsensor.

Fig. 2
Fig. 2

Rotation of the microsensor under fluid velocity V. Top view optical microscope images. (a) V = 0 μ m s , the sensor is aligned with the laser polarization direction. (b) V 40 μ m s , the sensor rotates to equilibrate the optical and hydrodynamic torques.

Fig. 3
Fig. 3

Schematics of the (left) optical and (right) hydrodynamic geometries for the flag-type microsensor.

Fig. 4
Fig. 4

Optical torque versus sensor angle ( w 0 = 0.5 μ m , P = 10 mW ) .

Fig. 5
Fig. 5

Experimental data and theoretical fitting using Eq. (3).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

K = ( P × E ext ) d V + [ r × ( P ) E ext ] d V .
P i = ϵ s ϵ ϵ s ϵ s + ( ϵ ϵ s ) n i E ext i ,
n y = 1 + e 2 e 3 [ e arctan ( e ) ] ,
e = ( a b ) 2 1 ,
n x = n z = 1 2 ( 1 n y ) .
[ K ] = ( k x k x y 0 k y x k y 0 0 0 k z ) .
T H = η V a ( k y cos θ + k x y sin θ ) e z .
K + T H = 0 .
V P = 2 G 0 η a k y sin θ 1 + ( k x y k y ) tan θ .

Metrics