Abstract

We describe a method for measuring the phase error distribution of an arrayed waveguide grating (AWG) in the frequency domain when the free spectral range (FSR) of the AWG is so wide that it cannot be covered by one tunable laser source. Our method is to sweep the light frequency in the neighborhoods of two successive peaks in the AWG transmission spectrum by using two laser sources with different tuning ranges. The method was confirmed experimentally by applying it to a 160GHz spaced AWG with a FSR of 11THz. The variations in the derived phase error data were very small at ±0.02rad around the central arrayed waveguides.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Takada, M. Abe, T. Shibata, M. Ishii, Y. Inoue, H. Yamada, Y. Hibino, and K. Okamoto, in Proceedings of the European Conference on Optical Communications 2000 (ECOC 2000) (VDE Verlog, 2000), paper PD3-8.
  2. K. Takada, T. Tanaka, M. Abe, T. Yanagisawa, M. Ishii, and K. Okamoto, Electron. Lett. 36, 60 (2000).
    [CrossRef]
  3. K. Takada, H. Yamada, and Y. Inoue, J. Lightwave Technol. 14, 1677 (1996).
    [CrossRef]
  4. K. Takada and K. Okamoto, Electron. Lett. 36, 160 (2000).
  5. E. Brinkmeyer and U. Glombitza, Optical Fiber Communication, Vol. 4 of 1991 OSA Technical Digest Series (Optical Society of America, 1991), paper CA WN2, p. 129.
  6. K. Takada, M. Abe, and T. Shibata, Electron. Lett. 38, 815 (2002).
    [CrossRef]

2002 (1)

K. Takada, M. Abe, and T. Shibata, Electron. Lett. 38, 815 (2002).
[CrossRef]

2000 (2)

K. Takada and K. Okamoto, Electron. Lett. 36, 160 (2000).

K. Takada, T. Tanaka, M. Abe, T. Yanagisawa, M. Ishii, and K. Okamoto, Electron. Lett. 36, 60 (2000).
[CrossRef]

1996 (1)

K. Takada, H. Yamada, and Y. Inoue, J. Lightwave Technol. 14, 1677 (1996).
[CrossRef]

Abe, M.

K. Takada, M. Abe, and T. Shibata, Electron. Lett. 38, 815 (2002).
[CrossRef]

K. Takada, T. Tanaka, M. Abe, T. Yanagisawa, M. Ishii, and K. Okamoto, Electron. Lett. 36, 60 (2000).
[CrossRef]

K. Takada, M. Abe, T. Shibata, M. Ishii, Y. Inoue, H. Yamada, Y. Hibino, and K. Okamoto, in Proceedings of the European Conference on Optical Communications 2000 (ECOC 2000) (VDE Verlog, 2000), paper PD3-8.

Brinkmeyer, E.

E. Brinkmeyer and U. Glombitza, Optical Fiber Communication, Vol. 4 of 1991 OSA Technical Digest Series (Optical Society of America, 1991), paper CA WN2, p. 129.

Glombitza, U.

E. Brinkmeyer and U. Glombitza, Optical Fiber Communication, Vol. 4 of 1991 OSA Technical Digest Series (Optical Society of America, 1991), paper CA WN2, p. 129.

Hibino, Y.

K. Takada, M. Abe, T. Shibata, M. Ishii, Y. Inoue, H. Yamada, Y. Hibino, and K. Okamoto, in Proceedings of the European Conference on Optical Communications 2000 (ECOC 2000) (VDE Verlog, 2000), paper PD3-8.

Inoue, Y.

K. Takada, H. Yamada, and Y. Inoue, J. Lightwave Technol. 14, 1677 (1996).
[CrossRef]

K. Takada, M. Abe, T. Shibata, M. Ishii, Y. Inoue, H. Yamada, Y. Hibino, and K. Okamoto, in Proceedings of the European Conference on Optical Communications 2000 (ECOC 2000) (VDE Verlog, 2000), paper PD3-8.

Ishii, M.

K. Takada, T. Tanaka, M. Abe, T. Yanagisawa, M. Ishii, and K. Okamoto, Electron. Lett. 36, 60 (2000).
[CrossRef]

K. Takada, M. Abe, T. Shibata, M. Ishii, Y. Inoue, H. Yamada, Y. Hibino, and K. Okamoto, in Proceedings of the European Conference on Optical Communications 2000 (ECOC 2000) (VDE Verlog, 2000), paper PD3-8.

Okamoto, K.

K. Takada, T. Tanaka, M. Abe, T. Yanagisawa, M. Ishii, and K. Okamoto, Electron. Lett. 36, 60 (2000).
[CrossRef]

K. Takada and K. Okamoto, Electron. Lett. 36, 160 (2000).

K. Takada, M. Abe, T. Shibata, M. Ishii, Y. Inoue, H. Yamada, Y. Hibino, and K. Okamoto, in Proceedings of the European Conference on Optical Communications 2000 (ECOC 2000) (VDE Verlog, 2000), paper PD3-8.

Shibata, T.

K. Takada, M. Abe, and T. Shibata, Electron. Lett. 38, 815 (2002).
[CrossRef]

K. Takada, M. Abe, T. Shibata, M. Ishii, Y. Inoue, H. Yamada, Y. Hibino, and K. Okamoto, in Proceedings of the European Conference on Optical Communications 2000 (ECOC 2000) (VDE Verlog, 2000), paper PD3-8.

Takada, K.

K. Takada, M. Abe, and T. Shibata, Electron. Lett. 38, 815 (2002).
[CrossRef]

K. Takada and K. Okamoto, Electron. Lett. 36, 160 (2000).

K. Takada, T. Tanaka, M. Abe, T. Yanagisawa, M. Ishii, and K. Okamoto, Electron. Lett. 36, 60 (2000).
[CrossRef]

K. Takada, H. Yamada, and Y. Inoue, J. Lightwave Technol. 14, 1677 (1996).
[CrossRef]

K. Takada, M. Abe, T. Shibata, M. Ishii, Y. Inoue, H. Yamada, Y. Hibino, and K. Okamoto, in Proceedings of the European Conference on Optical Communications 2000 (ECOC 2000) (VDE Verlog, 2000), paper PD3-8.

Tanaka, T.

K. Takada, T. Tanaka, M. Abe, T. Yanagisawa, M. Ishii, and K. Okamoto, Electron. Lett. 36, 60 (2000).
[CrossRef]

Yamada, H.

K. Takada, H. Yamada, and Y. Inoue, J. Lightwave Technol. 14, 1677 (1996).
[CrossRef]

K. Takada, M. Abe, T. Shibata, M. Ishii, Y. Inoue, H. Yamada, Y. Hibino, and K. Okamoto, in Proceedings of the European Conference on Optical Communications 2000 (ECOC 2000) (VDE Verlog, 2000), paper PD3-8.

Yanagisawa, T.

K. Takada, T. Tanaka, M. Abe, T. Yanagisawa, M. Ishii, and K. Okamoto, Electron. Lett. 36, 60 (2000).
[CrossRef]

Electron. Lett. (3)

K. Takada, T. Tanaka, M. Abe, T. Yanagisawa, M. Ishii, and K. Okamoto, Electron. Lett. 36, 60 (2000).
[CrossRef]

K. Takada and K. Okamoto, Electron. Lett. 36, 160 (2000).

K. Takada, M. Abe, and T. Shibata, Electron. Lett. 38, 815 (2002).
[CrossRef]

J. Lightwave Technol. (1)

K. Takada, H. Yamada, and Y. Inoue, J. Lightwave Technol. 14, 1677 (1996).
[CrossRef]

Other (2)

E. Brinkmeyer and U. Glombitza, Optical Fiber Communication, Vol. 4 of 1991 OSA Technical Digest Series (Optical Society of America, 1991), paper CA WN2, p. 129.

K. Takada, M. Abe, T. Shibata, M. Ishii, Y. Inoue, H. Yamada, Y. Hibino, and K. Okamoto, in Proceedings of the European Conference on Optical Communications 2000 (ECOC 2000) (VDE Verlog, 2000), paper PD3-8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for measuring AWG phase error distribution in the frequency domain. Output light from each laser source was launched into the measurement system via an optical switch. PC#1–PC#3, polarization controllers; A/D, analog-to-digital. PC#1 was used to excite the TE mode of the AWG. The interference beat was adjusted to its maximum value with PC#2.

Fig. 2
Fig. 2

Two interference beat signal waveforms { W 1 ( i ) } and { W 2 ( i ) } for i = 1 , 2 , 15930 of the AWG under test obtained by the first and second measurements. Insets show enlargements of the waveforms around 1528 and 1622 nm .

Fig. 3
Fig. 3

Variations in 20 phase error distributions of the AWG under test at 1622 nm . The amplitude distribution is plotted as the dotted curve.

Fig. 4
Fig. 4

Comparison of calculated (solid curve) and measured (open circles) transmission spectra around (a) 1622 and (b) 1528 nm . The transmission spectra achieved when each phase error is compensated for are also plotted as the dotted curves.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

W m ( i ) = { F W m ( i ) ( 1 i 5000 ) ( or 1511 λ 1549 ) 0 ( 5001 i 11930 ) ( or 1549 < λ < 1605 ) S W m ( i 11930 ) ( 11931 i 15930 ) ( or 1605 λ 1639 ) .

Metrics