Abstract

A large-mode-area holey fiber was tapered to a point in which the airholes collapsed, and its dependence on temperature and strain was studied. The transmission spectrum of such a fiber exhibits a series of peaks owing to the interference between the modes of the solid taper waist. We found that the interference peaks shifted to shorter wavelengths as the taper was elongated. However, the peaks were insensitive to temperature. The fabrication and advantages of our novel wavelength-encoded temperature-independent strain sensor compared with other optical fiber strain sensors are discussed.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell, Science 299, 358 (2003).
    [CrossRef] [PubMed]
  2. A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibers (Kluwer Academic, 2003).
    [CrossRef]
  3. E. C. Magi, H. C. Nguyen, and B. J. Eggleton, Opt. Express 13, 453 (2005).
    [CrossRef] [PubMed]
  4. V. P. Minkovich, J. Villatoro, D. Monzón-Hernández, S. Calixto, A. B. Sotsky, and L. I. Sotskaya, Opt. Express 13, 7609 (2005).
    [CrossRef] [PubMed]
  5. V. P. Minkovich, J. Villatoro, D. Monzón-Hernández, A. B. Sotsky, and L. I. Sotskaya, "Modeling of holey fiber tapers with resonance transmission for sensor applications," submitted to J. Lightwave Technol.
  6. V. P. Minkovich, A. V. Kiryanov, A. B. Sotsky, and L. I. Sotskaya, J. Opt. Soc. Am. B 21, 1161 (2004).
    [CrossRef]
  7. V. P. Minkovich, A. V. Kir'yanov, and S. Calixto, Laser Phys. 14, 767 (2004).
  8. L. Zou, X. Bao, S. Afshar V., and L. Chen, Opt. Lett. 29, 1485 (2004).
    [CrossRef] [PubMed]
  9. Y. Zhu, P. Shum, H. W. Bay, M. Yan, X. Yu, J. Hu, J. Hao, and C. Lu, Opt. Lett. 30, 367 (2005).
    [CrossRef] [PubMed]
  10. C. Martelli, J. Canning, N. Groothoff, and K. Lyytikainen, Opt. Lett. 30, 1785 (2005).
    [CrossRef] [PubMed]
  11. O. Frazao, J. P. Carvalho, L. A. Ferreira, F. M. Araujo, and J. L. Santos, J. Lightwave Technol. 16, 2109 (2005).

2005 (5)

2004 (3)

2003 (1)

P. St. J. Russell, Science 299, 358 (2003).
[CrossRef] [PubMed]

Araujo, F. M.

Bao, X.

Bay, H. W.

Bjarklev, A.

A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibers (Kluwer Academic, 2003).
[CrossRef]

Bjarklev, A. S.

A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibers (Kluwer Academic, 2003).
[CrossRef]

Broeng, J.

A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibers (Kluwer Academic, 2003).
[CrossRef]

Calixto, S.

Canning, J.

Carvalho, J. P.

Chen, L.

Eggleton, B. J.

Ferreira, L. A.

Frazao, O.

Groothoff, N.

Hao, J.

Hu, J.

Kiryanov, A. V.

Kir'yanov, A. V.

V. P. Minkovich, A. V. Kir'yanov, and S. Calixto, Laser Phys. 14, 767 (2004).

Lu, C.

Lyytikainen, K.

Magi, E. C.

Martelli, C.

Minkovich, V. P.

V. P. Minkovich, J. Villatoro, D. Monzón-Hernández, S. Calixto, A. B. Sotsky, and L. I. Sotskaya, Opt. Express 13, 7609 (2005).
[CrossRef] [PubMed]

V. P. Minkovich, A. V. Kiryanov, A. B. Sotsky, and L. I. Sotskaya, J. Opt. Soc. Am. B 21, 1161 (2004).
[CrossRef]

V. P. Minkovich, A. V. Kir'yanov, and S. Calixto, Laser Phys. 14, 767 (2004).

V. P. Minkovich, J. Villatoro, D. Monzón-Hernández, A. B. Sotsky, and L. I. Sotskaya, "Modeling of holey fiber tapers with resonance transmission for sensor applications," submitted to J. Lightwave Technol.

Monzón-Hernández, D.

V. P. Minkovich, J. Villatoro, D. Monzón-Hernández, S. Calixto, A. B. Sotsky, and L. I. Sotskaya, Opt. Express 13, 7609 (2005).
[CrossRef] [PubMed]

V. P. Minkovich, J. Villatoro, D. Monzón-Hernández, A. B. Sotsky, and L. I. Sotskaya, "Modeling of holey fiber tapers with resonance transmission for sensor applications," submitted to J. Lightwave Technol.

Nguyen, H. C.

Russell, P. St.

P. St. J. Russell, Science 299, 358 (2003).
[CrossRef] [PubMed]

Santos, J. L.

Shum, P.

Sotskaya, L. I.

V. P. Minkovich, J. Villatoro, D. Monzón-Hernández, S. Calixto, A. B. Sotsky, and L. I. Sotskaya, Opt. Express 13, 7609 (2005).
[CrossRef] [PubMed]

V. P. Minkovich, A. V. Kiryanov, A. B. Sotsky, and L. I. Sotskaya, J. Opt. Soc. Am. B 21, 1161 (2004).
[CrossRef]

V. P. Minkovich, J. Villatoro, D. Monzón-Hernández, A. B. Sotsky, and L. I. Sotskaya, "Modeling of holey fiber tapers with resonance transmission for sensor applications," submitted to J. Lightwave Technol.

Sotsky, A. B.

V. P. Minkovich, J. Villatoro, D. Monzón-Hernández, S. Calixto, A. B. Sotsky, and L. I. Sotskaya, Opt. Express 13, 7609 (2005).
[CrossRef] [PubMed]

V. P. Minkovich, A. V. Kiryanov, A. B. Sotsky, and L. I. Sotskaya, J. Opt. Soc. Am. B 21, 1161 (2004).
[CrossRef]

V. P. Minkovich, J. Villatoro, D. Monzón-Hernández, A. B. Sotsky, and L. I. Sotskaya, "Modeling of holey fiber tapers with resonance transmission for sensor applications," submitted to J. Lightwave Technol.

V., S. Afshar

Villatoro, J.

V. P. Minkovich, J. Villatoro, D. Monzón-Hernández, S. Calixto, A. B. Sotsky, and L. I. Sotskaya, Opt. Express 13, 7609 (2005).
[CrossRef] [PubMed]

V. P. Minkovich, J. Villatoro, D. Monzón-Hernández, A. B. Sotsky, and L. I. Sotskaya, "Modeling of holey fiber tapers with resonance transmission for sensor applications," submitted to J. Lightwave Technol.

Yan, M.

Yu, X.

Zhu, Y.

Zou, L.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(Color online) Top, atomic-force microscope image of the cleaved end of our holey fiber before tapering. Middle, illustration of the tapered fiber. Bottom, atomic force microscope image, obtained in contact mode, of a 39 μ m thick taper in which d = 264 nm and d Λ = 0.17 . The scan size of the image is 11.9 μ m .

Fig. 2
Fig. 2

Normalized transmission spectra of the holey fiber before (dotted curve) and after (continuous curve) tapering. The taper diameter was 28 μ m .

Fig. 3
Fig. 3

Normalized transmission spectra of a 28 μ m thick tapered holey fiber under three applied strains measured at (a) 1550 and (b) 1300 nm. In both figures the continuous curves represent 0 μ ϵ , the dashed curves 1100 μ ϵ , and dotted curves 2200 μ ϵ .

Fig. 4
Fig. 4

Typical shift of the peaks as a function of the applied strain.

Metrics