Abstract

We experimentally and theoretically analyze an original method based on two-wave mixing in an erbium-doped fiber amplifier for optical carrier reduction of microwave signals. 75% optical carrier attenuation has been observed, and a 10 dB modulation depth increase of the microwave signal is experimentally demonstrated. Moreover, calculated results are in good agreement with measurements and predict that up to 80% carrier attenuation is easily possible.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Williams and R. D. Esman, Electron. Lett. 30, 1965 (1994).
    [CrossRef]
  2. S. Norcia, S. Tonda-Goldstein, R. Frey, D. Dolfi, and J.-P. Huignard, Opt. Lett. 28, 1888 (2003).
    [CrossRef] [PubMed]
  3. A. Tomita, Appl. Phys. Lett. 34, 463 (1979).
    [CrossRef]
  4. M. J. Damzen, R. P. M. Green, and K. S. Syed, Opt. Lett. 20, 1704 (1995).
    [CrossRef] [PubMed]
  5. A. Minassian, G. J. Crofts, and M. J. Damzen, IEEE J. Quantum Electron. 36, 802 (2000).
    [CrossRef]
  6. P. Sillard, A. Brignon, and J.-P. Huignard, IEEE J. Quantum Electron. 34, 465 (1998).
    [CrossRef]
  7. P. Yeh, IEEE J. Quantum Electron. 25, 484 (1989).
    [CrossRef]
  8. S. T. Fisken, Opt. Lett. 17, 1776 (1992).
    [CrossRef]
  9. B. Fischer, J. L. Zyskind, J. W. Sulhoff, and D. J. DiGiovanni, Opt. Lett. 18, 2108 (1993).
    [CrossRef] [PubMed]
  10. M. Horowitz, R. Daisy, B. Fischer, and J. L. Zyskind, Opt. Lett. 19, 1406 (1994).
    [CrossRef] [PubMed]
  11. M. Janos and S. C. Guy, J. Lightwave Technol. 16, 542 (1998).
    [CrossRef]
  12. S. A. Havstad, B. Fischer, A. E. Willner, and M. G. Wickham, Opt. Lett. 24, 1466 (1999).
    [CrossRef]
  13. A. Brignon, J.-P. Huignard, Opt. Lett. 18, 1639 (1993).
    [CrossRef] [PubMed]
  14. O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob'ev, D. V. Bredikhin, and M. S. Kuznetsov, IEEE J. Quantum Electron. 39, 910 (2003).
    [CrossRef]

2003 (2)

S. Norcia, S. Tonda-Goldstein, R. Frey, D. Dolfi, and J.-P. Huignard, Opt. Lett. 28, 1888 (2003).
[CrossRef] [PubMed]

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob'ev, D. V. Bredikhin, and M. S. Kuznetsov, IEEE J. Quantum Electron. 39, 910 (2003).
[CrossRef]

2000 (1)

A. Minassian, G. J. Crofts, and M. J. Damzen, IEEE J. Quantum Electron. 36, 802 (2000).
[CrossRef]

1999 (1)

1998 (2)

M. Janos and S. C. Guy, J. Lightwave Technol. 16, 542 (1998).
[CrossRef]

P. Sillard, A. Brignon, and J.-P. Huignard, IEEE J. Quantum Electron. 34, 465 (1998).
[CrossRef]

1995 (1)

1994 (2)

1993 (2)

1992 (1)

1989 (1)

P. Yeh, IEEE J. Quantum Electron. 25, 484 (1989).
[CrossRef]

1979 (1)

A. Tomita, Appl. Phys. Lett. 34, 463 (1979).
[CrossRef]

Antipov, O. L.

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob'ev, D. V. Bredikhin, and M. S. Kuznetsov, IEEE J. Quantum Electron. 39, 910 (2003).
[CrossRef]

Bredikhin, D. V.

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob'ev, D. V. Bredikhin, and M. S. Kuznetsov, IEEE J. Quantum Electron. 39, 910 (2003).
[CrossRef]

Brignon, A.

P. Sillard, A. Brignon, and J.-P. Huignard, IEEE J. Quantum Electron. 34, 465 (1998).
[CrossRef]

A. Brignon, J.-P. Huignard, Opt. Lett. 18, 1639 (1993).
[CrossRef] [PubMed]

Crofts, G. J.

A. Minassian, G. J. Crofts, and M. J. Damzen, IEEE J. Quantum Electron. 36, 802 (2000).
[CrossRef]

Daisy, R.

Damzen, M. J.

A. Minassian, G. J. Crofts, and M. J. Damzen, IEEE J. Quantum Electron. 36, 802 (2000).
[CrossRef]

M. J. Damzen, R. P. M. Green, and K. S. Syed, Opt. Lett. 20, 1704 (1995).
[CrossRef] [PubMed]

DiGiovanni, D. J.

Dolfi, D.

Eremeykin, O. N.

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob'ev, D. V. Bredikhin, and M. S. Kuznetsov, IEEE J. Quantum Electron. 39, 910 (2003).
[CrossRef]

Esman, R. D.

K. J. Williams and R. D. Esman, Electron. Lett. 30, 1965 (1994).
[CrossRef]

Fischer, B.

Fisken, S. T.

Frey, R.

Green, R. P.

Guy, S. C.

Havstad, S. A.

Horowitz, M.

Huignard, J.-P.

Janos, M.

Kuznetsov, M. S.

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob'ev, D. V. Bredikhin, and M. S. Kuznetsov, IEEE J. Quantum Electron. 39, 910 (2003).
[CrossRef]

Minassian, A.

A. Minassian, G. J. Crofts, and M. J. Damzen, IEEE J. Quantum Electron. 36, 802 (2000).
[CrossRef]

Norcia, S.

Savikin, A. P.

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob'ev, D. V. Bredikhin, and M. S. Kuznetsov, IEEE J. Quantum Electron. 39, 910 (2003).
[CrossRef]

Sillard, P.

P. Sillard, A. Brignon, and J.-P. Huignard, IEEE J. Quantum Electron. 34, 465 (1998).
[CrossRef]

Sulhoff, J. W.

Syed, K. S.

Tomita, A.

A. Tomita, Appl. Phys. Lett. 34, 463 (1979).
[CrossRef]

Tonda-Goldstein, S.

Vorob'ev, V. A.

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob'ev, D. V. Bredikhin, and M. S. Kuznetsov, IEEE J. Quantum Electron. 39, 910 (2003).
[CrossRef]

Wickham, M. G.

Williams, K. J.

K. J. Williams and R. D. Esman, Electron. Lett. 30, 1965 (1994).
[CrossRef]

Willner, A. E.

Yeh, P.

P. Yeh, IEEE J. Quantum Electron. 25, 484 (1989).
[CrossRef]

Zyskind, J. L.

Appl. Phys. Lett. (1)

A. Tomita, Appl. Phys. Lett. 34, 463 (1979).
[CrossRef]

Electron. Lett. (1)

K. J. Williams and R. D. Esman, Electron. Lett. 30, 1965 (1994).
[CrossRef]

IEEE J. Quantum Electron. (4)

A. Minassian, G. J. Crofts, and M. J. Damzen, IEEE J. Quantum Electron. 36, 802 (2000).
[CrossRef]

P. Sillard, A. Brignon, and J.-P. Huignard, IEEE J. Quantum Electron. 34, 465 (1998).
[CrossRef]

P. Yeh, IEEE J. Quantum Electron. 25, 484 (1989).
[CrossRef]

O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob'ev, D. V. Bredikhin, and M. S. Kuznetsov, IEEE J. Quantum Electron. 39, 910 (2003).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Lett. (7)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup. Er 3 + PMF numerical aperture ON = 0.16 ± 10 % , core diameter = 4 ± 1 μ m , cutoff wavelength λ c = 900 ± 100 n m , losses 7 d B m a t 980    n m and 10    d B m a t 1531    n m .

Fig. 2
Fig. 2

Principle of optical modulation depth enhancement by two-wave mixing in an amplifier medium.

Fig. 3
Fig. 3

Measured and calculated output probe power, with and without the existence of a gain grating, as a function of the injected pump power ( g 0 L = 5.4 ). The probe is not modulated.

Fig. 4
Fig. 4

Relative optical carrier attenuation, as a function of injected pump power, and for various values of fiber amplifier gain g 0 L .

Fig. 5
Fig. 5

Measured modulation depth gain as a function of the ratio of injected pump and probe powers for modulation frequency f m = 7 GHz of the probe and g 0 L = 4 . The two points on the dotted lines stand for measurements not fulfilled by the presented model.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d A p d z = γ 0 A p γ 1 A s ,
d A s d z = γ 0 A s + γ 1 A p .

Metrics