Abstract

We present a design of a linear optical waveguide that utilizes a C-shaped metallic nano-aperture that efficiently transports light while maintaining a spot size of λ10. The performance of a C-aperture waveguide is superior to both a regular ridge waveguide and other surface plasmon based metal nano-optical waveguides. The energy transport mechanisms are explained by the coupling of an aperture surface resonance and the thickness resonances inside the guide channel. Finite-difference time-domain simulations of gold C-aperture waveguides are performed for a 1.5μm wavelength incident plane wave. The 1e decay length in power transmission is predicted to be 2.5μm. The total power throughput is 1.66 for the 2.55μm long guide, with an intensity 6 times that of the incident wave at a distance 120nm from the exit plane, having a spot size of 150nm.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, Appl. Phys. Lett. 86, 071103 (2005).
    [CrossRef]
  2. R. Quidant, C. Girard, J. Weeber, and A. Dereux, Phys. Rev. B 69, 085407 (2004).
    [CrossRef]
  3. J. Seidel, F. I. Baida, L. Bischoff, B. Guizal, S. Grafstrom, D. Van Labeke, and L. M. Eng, Phys. Rev. B 69, 121405 (2004).
    [CrossRef]
  4. F. J. Garcia de Abajo, J. J. Saenz, I. Campillo, and J. S. Dolado, Opt. Express 7, 7 (2006).
    [CrossRef]
  5. F. J. Garcia-Vidal, S. Moreno, J. A. Porto, and L. Martin-Moreno, Phys. Rev. Lett. 95, 103901 (2005).
    [CrossRef] [PubMed]
  6. Y. Takakura, Phys. Rev. Lett. 86, 5601 (2001).
    [CrossRef] [PubMed]
  7. S. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature Lett. 440, 508 (2006).
    [CrossRef]
  8. X. Shi, R. Thornton, and L. Hesselink, in Proc. SPIE 4342, 320 (2001).
    [CrossRef]
  9. X. Shi, R. Thornton, and L. Hesselink, Opt. Lett. 23, 1320 (2003).
    [CrossRef]
  10. X. Shi and L. Hesselink, J. Opt. Soc. Am. B 21, 1305 (2004).
    [CrossRef]
  11. J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, Appl. Phys. Lett. 85, 648 (2004).
    [CrossRef]
  12. T. Shen and K. Zaki, Electromagn. Waves 40, 71 (2003).
    [CrossRef]
  13. F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, and T. E. Schlesinger, Appl. Phys. Lett. 83, 1805 (2003).
  14. L. Sun, "Power flow topology related to metallic nano-apertures," Ph.D dissertation (Stanford University, 2005).

2006 (2)

F. J. Garcia de Abajo, J. J. Saenz, I. Campillo, and J. S. Dolado, Opt. Express 7, 7 (2006).
[CrossRef]

S. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature Lett. 440, 508 (2006).
[CrossRef]

2005 (2)

F. J. Garcia-Vidal, S. Moreno, J. A. Porto, and L. Martin-Moreno, Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef] [PubMed]

S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, Appl. Phys. Lett. 86, 071103 (2005).
[CrossRef]

2004 (4)

R. Quidant, C. Girard, J. Weeber, and A. Dereux, Phys. Rev. B 69, 085407 (2004).
[CrossRef]

J. Seidel, F. I. Baida, L. Bischoff, B. Guizal, S. Grafstrom, D. Van Labeke, and L. M. Eng, Phys. Rev. B 69, 121405 (2004).
[CrossRef]

X. Shi and L. Hesselink, J. Opt. Soc. Am. B 21, 1305 (2004).
[CrossRef]

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, Appl. Phys. Lett. 85, 648 (2004).
[CrossRef]

2003 (3)

T. Shen and K. Zaki, Electromagn. Waves 40, 71 (2003).
[CrossRef]

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, and T. E. Schlesinger, Appl. Phys. Lett. 83, 1805 (2003).

X. Shi, R. Thornton, and L. Hesselink, Opt. Lett. 23, 1320 (2003).
[CrossRef]

2001 (2)

X. Shi, R. Thornton, and L. Hesselink, in Proc. SPIE 4342, 320 (2001).
[CrossRef]

Y. Takakura, Phys. Rev. Lett. 86, 5601 (2001).
[CrossRef] [PubMed]

Baida, F. I.

J. Seidel, F. I. Baida, L. Bischoff, B. Guizal, S. Grafstrom, D. Van Labeke, and L. M. Eng, Phys. Rev. B 69, 121405 (2004).
[CrossRef]

Bain, J. A.

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, and T. E. Schlesinger, Appl. Phys. Lett. 83, 1805 (2003).

Barclay, P. E.

S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, Appl. Phys. Lett. 86, 071103 (2005).
[CrossRef]

Bischoff, L.

J. Seidel, F. I. Baida, L. Bischoff, B. Guizal, S. Grafstrom, D. Van Labeke, and L. M. Eng, Phys. Rev. B 69, 121405 (2004).
[CrossRef]

Bozhevolnyi, S.

S. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature Lett. 440, 508 (2006).
[CrossRef]

Campillo, I.

F. J. Garcia de Abajo, J. J. Saenz, I. Campillo, and J. S. Dolado, Opt. Express 7, 7 (2006).
[CrossRef]

Chen, F.

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, and T. E. Schlesinger, Appl. Phys. Lett. 83, 1805 (2003).

Dereux, A.

R. Quidant, C. Girard, J. Weeber, and A. Dereux, Phys. Rev. B 69, 085407 (2004).
[CrossRef]

Devaux, E.

S. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature Lett. 440, 508 (2006).
[CrossRef]

Dolado, J. S.

F. J. Garcia de Abajo, J. J. Saenz, I. Campillo, and J. S. Dolado, Opt. Express 7, 7 (2006).
[CrossRef]

Ebbesen, T. W.

S. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature Lett. 440, 508 (2006).
[CrossRef]

Eng, L. M.

J. Seidel, F. I. Baida, L. Bischoff, B. Guizal, S. Grafstrom, D. Van Labeke, and L. M. Eng, Phys. Rev. B 69, 121405 (2004).
[CrossRef]

Friedman, M. D.

S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, Appl. Phys. Lett. 86, 071103 (2005).
[CrossRef]

Fromm, D. P.

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, Appl. Phys. Lett. 85, 648 (2004).
[CrossRef]

Garcia de Abajo, F. J.

F. J. Garcia de Abajo, J. J. Saenz, I. Campillo, and J. S. Dolado, Opt. Express 7, 7 (2006).
[CrossRef]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, S. Moreno, J. A. Porto, and L. Martin-Moreno, Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef] [PubMed]

Girard, C.

R. Quidant, C. Girard, J. Weeber, and A. Dereux, Phys. Rev. B 69, 085407 (2004).
[CrossRef]

Grafstrom, S.

J. Seidel, F. I. Baida, L. Bischoff, B. Guizal, S. Grafstrom, D. Van Labeke, and L. M. Eng, Phys. Rev. B 69, 121405 (2004).
[CrossRef]

Guizal, B.

J. Seidel, F. I. Baida, L. Bischoff, B. Guizal, S. Grafstrom, D. Van Labeke, and L. M. Eng, Phys. Rev. B 69, 121405 (2004).
[CrossRef]

Hesselink, L.

X. Shi and L. Hesselink, J. Opt. Soc. Am. B 21, 1305 (2004).
[CrossRef]

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, Appl. Phys. Lett. 85, 648 (2004).
[CrossRef]

X. Shi, R. Thornton, and L. Hesselink, Opt. Lett. 23, 1320 (2003).
[CrossRef]

X. Shi, R. Thornton, and L. Hesselink, in Proc. SPIE 4342, 320 (2001).
[CrossRef]

Itagi, A.

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, and T. E. Schlesinger, Appl. Phys. Lett. 83, 1805 (2003).

Laluet, J.-Y.

S. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature Lett. 440, 508 (2006).
[CrossRef]

Maier, S. A.

S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, Appl. Phys. Lett. 86, 071103 (2005).
[CrossRef]

Martin-Moreno, L.

F. J. Garcia-Vidal, S. Moreno, J. A. Porto, and L. Martin-Moreno, Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef] [PubMed]

Matteo, J. A.

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, Appl. Phys. Lett. 85, 648 (2004).
[CrossRef]

Moerner, W. E.

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, Appl. Phys. Lett. 85, 648 (2004).
[CrossRef]

Moreno, S.

F. J. Garcia-Vidal, S. Moreno, J. A. Porto, and L. Martin-Moreno, Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef] [PubMed]

Painter, O.

S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, Appl. Phys. Lett. 86, 071103 (2005).
[CrossRef]

Porto, J. A.

F. J. Garcia-Vidal, S. Moreno, J. A. Porto, and L. Martin-Moreno, Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef] [PubMed]

Quidant, R.

R. Quidant, C. Girard, J. Weeber, and A. Dereux, Phys. Rev. B 69, 085407 (2004).
[CrossRef]

Saenz, J. J.

F. J. Garcia de Abajo, J. J. Saenz, I. Campillo, and J. S. Dolado, Opt. Express 7, 7 (2006).
[CrossRef]

Schlesinger, T. E.

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, and T. E. Schlesinger, Appl. Phys. Lett. 83, 1805 (2003).

Schuck, P. J.

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, Appl. Phys. Lett. 85, 648 (2004).
[CrossRef]

Seidel, J.

J. Seidel, F. I. Baida, L. Bischoff, B. Guizal, S. Grafstrom, D. Van Labeke, and L. M. Eng, Phys. Rev. B 69, 121405 (2004).
[CrossRef]

Shen, T.

T. Shen and K. Zaki, Electromagn. Waves 40, 71 (2003).
[CrossRef]

Shi, X.

X. Shi and L. Hesselink, J. Opt. Soc. Am. B 21, 1305 (2004).
[CrossRef]

X. Shi, R. Thornton, and L. Hesselink, Opt. Lett. 23, 1320 (2003).
[CrossRef]

X. Shi, R. Thornton, and L. Hesselink, in Proc. SPIE 4342, 320 (2001).
[CrossRef]

Stancil, D. D.

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, and T. E. Schlesinger, Appl. Phys. Lett. 83, 1805 (2003).

Sun, L.

L. Sun, "Power flow topology related to metallic nano-apertures," Ph.D dissertation (Stanford University, 2005).

Takakura, Y.

Y. Takakura, Phys. Rev. Lett. 86, 5601 (2001).
[CrossRef] [PubMed]

Thornton, R.

X. Shi, R. Thornton, and L. Hesselink, Opt. Lett. 23, 1320 (2003).
[CrossRef]

X. Shi, R. Thornton, and L. Hesselink, in Proc. SPIE 4342, 320 (2001).
[CrossRef]

Van Labeke, D.

J. Seidel, F. I. Baida, L. Bischoff, B. Guizal, S. Grafstrom, D. Van Labeke, and L. M. Eng, Phys. Rev. B 69, 121405 (2004).
[CrossRef]

Volkov, V. S.

S. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature Lett. 440, 508 (2006).
[CrossRef]

Weeber, J.

R. Quidant, C. Girard, J. Weeber, and A. Dereux, Phys. Rev. B 69, 085407 (2004).
[CrossRef]

Yuen, Y.

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, Appl. Phys. Lett. 85, 648 (2004).
[CrossRef]

Zaki, K.

T. Shen and K. Zaki, Electromagn. Waves 40, 71 (2003).
[CrossRef]

Appl. Phys. Lett. (3)

S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, Appl. Phys. Lett. 86, 071103 (2005).
[CrossRef]

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, Appl. Phys. Lett. 85, 648 (2004).
[CrossRef]

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, and T. E. Schlesinger, Appl. Phys. Lett. 83, 1805 (2003).

Electromagn. Waves (1)

T. Shen and K. Zaki, Electromagn. Waves 40, 71 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature Lett. (1)

S. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature Lett. 440, 508 (2006).
[CrossRef]

Opt. Express (1)

F. J. Garcia de Abajo, J. J. Saenz, I. Campillo, and J. S. Dolado, Opt. Express 7, 7 (2006).
[CrossRef]

Opt. Lett. (1)

X. Shi, R. Thornton, and L. Hesselink, Opt. Lett. 23, 1320 (2003).
[CrossRef]

Phys. Rev. B (2)

R. Quidant, C. Girard, J. Weeber, and A. Dereux, Phys. Rev. B 69, 085407 (2004).
[CrossRef]

J. Seidel, F. I. Baida, L. Bischoff, B. Guizal, S. Grafstrom, D. Van Labeke, and L. M. Eng, Phys. Rev. B 69, 121405 (2004).
[CrossRef]

Phys. Rev. Lett. (2)

F. J. Garcia-Vidal, S. Moreno, J. A. Porto, and L. Martin-Moreno, Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef] [PubMed]

Y. Takakura, Phys. Rev. Lett. 86, 5601 (2001).
[CrossRef] [PubMed]

Proc. SPIE (1)

X. Shi, R. Thornton, and L. Hesselink, in Proc. SPIE 4342, 320 (2001).
[CrossRef]

Other (1)

L. Sun, "Power flow topology related to metallic nano-apertures," Ph.D dissertation (Stanford University, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of a C-aperture waveguide. The dimensions a, b, w, d can be optimized to provide resonant throughput. Typically b = 3 w , d = w , and a = 2.5 w for optimal performance.

Fig. 2
Fig. 2

FDTD calculation of pulse responses of C-aperture in films of different thicknesses. The outer dimensions of the C are 450 nm × 330 nm , and the dimensions of the ridge are 150 nm × 150 nm .

Fig. 3
Fig. 3

FDTD calculation of standing waves formed by a propagating electric field component along the center of perfect electric conductor C-aperture waveguides of different thicknesses.

Fig. 4
Fig. 4

FDTD calculation of power throughput versus depth into the guide channel.

Fig. 5
Fig. 5

(left) Field intensity at 120 nm from the exit side for a 2.55 μ m Au guide. (right) Center y z cross section of the field intensity inside the guide.

Metrics