Abstract

A new technique of dual-frequency Doppler-lidar measurement is investigated. This technique is based on the use of a coherently locked, tunable, dual-frequency laser source and is shown to accurately measure velocities as small as 26μms. It is generated by exploiting the nonlinear dynamics of a semiconductor laser through a proper combination of optical injection and operating conditions.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. T. Menzies and R. M. Hardesty, Proc. IEEE 77, 449 (1989).
    [Crossref]
  2. H. W. Mocker and P. E. Bjork, Appl. Opt. 28, 4914 (1989).
    [Crossref] [PubMed]
  3. W. L. Eberhard and R. M. Schotland, Appl. Opt. 19, 2967 (1980).
    [Crossref] [PubMed]
  4. L. Morvan, N. D. Lai, D. Dolfi, J.-P. Huignard, M. Brunel, F. Bretenaker, and A. Le Floch, Appl. Opt. 41, 5702 (2002).
    [Crossref] [PubMed]
  5. T. B. Simpson and F. Doft, IEEE Photon. Technol. Lett. 11, 1476 (1999).
    [Crossref]
  6. S. C. Chan and J. M. Liu, IEEE J. Sel. Top. Quantum Electron. 10, 1025 (2004).
    [Crossref]
  7. S. K. Hwang and J. M. Liu, Opt. Commun. 183, 195 (2000).
    [Crossref]
  8. T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, Quantum Semiclassic. Opt. 9, 765 (1997).
    [Crossref]
  9. S. K. Hwang, J. M. Liu, and J. K. White, IEEE J. Sel. Top. Quantum Electron. 10, 974 (2004).
    [Crossref]
  10. S. C. Chan and J. M. Liu, IEEE J. Quantum Electron. 42, 699 (2006).
    [Crossref]
  11. C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, J. Atmos. Ocean. Technol. 18, 376 (2001).
    [Crossref]

2006 (1)

S. C. Chan and J. M. Liu, IEEE J. Quantum Electron. 42, 699 (2006).
[Crossref]

2004 (2)

S. C. Chan and J. M. Liu, IEEE J. Sel. Top. Quantum Electron. 10, 1025 (2004).
[Crossref]

S. K. Hwang, J. M. Liu, and J. K. White, IEEE J. Sel. Top. Quantum Electron. 10, 974 (2004).
[Crossref]

2002 (1)

2001 (1)

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, J. Atmos. Ocean. Technol. 18, 376 (2001).
[Crossref]

2000 (1)

S. K. Hwang and J. M. Liu, Opt. Commun. 183, 195 (2000).
[Crossref]

1999 (1)

T. B. Simpson and F. Doft, IEEE Photon. Technol. Lett. 11, 1476 (1999).
[Crossref]

1997 (1)

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, Quantum Semiclassic. Opt. 9, 765 (1997).
[Crossref]

1989 (2)

R. T. Menzies and R. M. Hardesty, Proc. IEEE 77, 449 (1989).
[Crossref]

H. W. Mocker and P. E. Bjork, Appl. Opt. 28, 4914 (1989).
[Crossref] [PubMed]

1980 (1)

Banta, R. M.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, J. Atmos. Ocean. Technol. 18, 376 (2001).
[Crossref]

Bjork, P. E.

Bretenaker, F.

Brunel, M.

Chan, S. C.

S. C. Chan and J. M. Liu, IEEE J. Quantum Electron. 42, 699 (2006).
[Crossref]

S. C. Chan and J. M. Liu, IEEE J. Sel. Top. Quantum Electron. 10, 1025 (2004).
[Crossref]

Doft, F.

T. B. Simpson and F. Doft, IEEE Photon. Technol. Lett. 11, 1476 (1999).
[Crossref]

Dolfi, D.

Eberhard, W. L.

George, J. L.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, J. Atmos. Ocean. Technol. 18, 376 (2001).
[Crossref]

Grund, C. J.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, J. Atmos. Ocean. Technol. 18, 376 (2001).
[Crossref]

Hardesty, R. M.

R. T. Menzies and R. M. Hardesty, Proc. IEEE 77, 449 (1989).
[Crossref]

Howell, J. N.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, J. Atmos. Ocean. Technol. 18, 376 (2001).
[Crossref]

Huang, K. F.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, Quantum Semiclassic. Opt. 9, 765 (1997).
[Crossref]

Huignard, J.-P.

Hwang, S. K.

S. K. Hwang, J. M. Liu, and J. K. White, IEEE J. Sel. Top. Quantum Electron. 10, 974 (2004).
[Crossref]

S. K. Hwang and J. M. Liu, Opt. Commun. 183, 195 (2000).
[Crossref]

Lai, N. D.

Le Floch, A.

Liu, J. M.

S. C. Chan and J. M. Liu, IEEE J. Quantum Electron. 42, 699 (2006).
[Crossref]

S. K. Hwang, J. M. Liu, and J. K. White, IEEE J. Sel. Top. Quantum Electron. 10, 974 (2004).
[Crossref]

S. C. Chan and J. M. Liu, IEEE J. Sel. Top. Quantum Electron. 10, 1025 (2004).
[Crossref]

S. K. Hwang and J. M. Liu, Opt. Commun. 183, 195 (2000).
[Crossref]

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, Quantum Semiclassic. Opt. 9, 765 (1997).
[Crossref]

Menzies, R. T.

R. T. Menzies and R. M. Hardesty, Proc. IEEE 77, 449 (1989).
[Crossref]

Mocker, H. W.

Morvan, L.

Post, M. J.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, J. Atmos. Ocean. Technol. 18, 376 (2001).
[Crossref]

Richter, R. A.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, J. Atmos. Ocean. Technol. 18, 376 (2001).
[Crossref]

Schotland, R. M.

Simpson, T. B.

T. B. Simpson and F. Doft, IEEE Photon. Technol. Lett. 11, 1476 (1999).
[Crossref]

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, Quantum Semiclassic. Opt. 9, 765 (1997).
[Crossref]

Tai, K.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, Quantum Semiclassic. Opt. 9, 765 (1997).
[Crossref]

Weickmann, A. M.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, J. Atmos. Ocean. Technol. 18, 376 (2001).
[Crossref]

White, J. K.

S. K. Hwang, J. M. Liu, and J. K. White, IEEE J. Sel. Top. Quantum Electron. 10, 974 (2004).
[Crossref]

Appl. Opt. (3)

IEEE J. Quantum Electron. (1)

S. C. Chan and J. M. Liu, IEEE J. Quantum Electron. 42, 699 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

S. C. Chan and J. M. Liu, IEEE J. Sel. Top. Quantum Electron. 10, 1025 (2004).
[Crossref]

S. K. Hwang, J. M. Liu, and J. K. White, IEEE J. Sel. Top. Quantum Electron. 10, 974 (2004).
[Crossref]

IEEE Photon. Technol. Lett. (1)

T. B. Simpson and F. Doft, IEEE Photon. Technol. Lett. 11, 1476 (1999).
[Crossref]

J. Atmos. Ocean. Technol. (1)

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, J. Atmos. Ocean. Technol. 18, 376 (2001).
[Crossref]

Opt. Commun. (1)

S. K. Hwang and J. M. Liu, Opt. Commun. 183, 195 (2000).
[Crossref]

Proc. IEEE (1)

R. T. Menzies and R. M. Hardesty, Proc. IEEE 77, 449 (1989).
[Crossref]

Quantum Semiclassic. Opt. (1)

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, Quantum Semiclassic. Opt. 9, 765 (1997).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experimental setup. ML, master laser; SL, slave laser; OI, optical isolator; HW, half-wave plate; VA, variable attenuator; FR, Faraday rotator; PBS, polarizing beam splitter; L, lens; M, mirror; MT, moving target; F, fiber spool; PD, high-speed photodiode; A, microwave amplifier; MX, microwave mixer; PC, computer; MFS, microwave frequency synthesizer.

Fig. 2
Fig. 2

(a) Mixer output for f = 17 GHz . The target moves away from the detector at 26 μ m s . (b) Normalized PSD for f = 17 GHz . The measured Doppler shift is 3 mHz .

Fig. 3
Fig. 3

Solid curve, normalized PSD for f = 12.9 GHz . The measured Doppler shift is 33 mHz . The target moves back and forth at 384 μ m s . Dashed curve, normalized PSD for f = 17 GHz . The measured Doppler shift is 44 mHz , therefore the target velocity is 388 μ m s .

Fig. 4
Fig. 4

Summary of velocity measurements. The open and solid symbols are data taken with two different actuators. The straight line shows the observed velocities plotted against the expected Doppler shift. The open-symbol data were taken with a motor that moved at various different speeds over the 1000 s data acquisition time. The solid-symbol data were taken with a slower, more reliable motor.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E r ( t ) = { E 1 e i ϕ 1 ( t ) + E 2 e i [ ϕ 2 ( t ) 2 π f t ] } e i 2 π ν 1 t ,
E t ( t ) = { E 1 e i ϕ 1 ( t τ ) + E 2 e i [ ϕ 2 ( t τ ) + 2 K x 2 π f t ] } e i 2 π ν 1 ( t τ ) ,
I r ( t ) = 2 G r E 1 E 2 cos [ 2 π f t Δ ϕ ( t ) ] ,
I t ( t ) = 2 G t E 1 E 2 cos [ 2 π f t 2 K x Δ ϕ ( t τ ) ] ,
P mix = 2 A cos ( 2 K x Φ ) ,
P mix = 2 A cos ( 2 π f D t + 4 π d f c Φ ) ,

Metrics