Abstract

We extend the applicability of inverse scattering for optical coherence tomography (OCT) to the case of high numerical aperture focusing optics. We include the effects of tight focusing so that the approach is applicable to any interferometric microscopy method. The applicability to modalities, such as OCT and optical coherence microscopy, enables computed reconstruction of three-dimensional volumes from en face temporal ranging data. Simulations show that the computed structure outside of the focal plane exhibits spatially invariant resolution on par with the resolution achieved at the focal plane.

© 2006 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription