Abstract

We propose and experimentally demonstrate a simple and flexible scheme for a wavelength-spacing-tunable multichannel filter exploiting a sampled chirped fiber Bragg grating based on a symmetrical modification of the chirp ratio. Symmetrical bending along a sampled chirped fiber Bragg grating attached to a flexible cantilever beam induces a variation of the chirp ratio and a reflection chirp bandwidth of the grating without a center wavelength shift. Accordingly, the wavelength spacing of a sampled chirped fiber Bragg grating is continuously controlled by the reflection chirp bandwidth variation of the grating corresponding to the bending direction, which allows for realization of an effective wavelength-spacing-tunable multichannel filter. Based on the proposed technique, we achieve the continuous tunability of the wavelength spacing in a range from 1.51to6.11nm, depending on the bending direction of the cantilever beam.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, IEEE Photon. Technol. Lett. 7, 78 (1995).
    [CrossRef]
  2. R. Slavik, S. Doucet, and S. LaRochelle, J. Lightwave Technol. 21, 1059 (2003).
    [CrossRef]
  3. Y. Dai, X. Chen, X. Xu, C. Fan, and S. Xie, IEEE Photon. Technol. Lett. 17, 1040 (2005).
    [CrossRef]
  4. J. Magne, P. Biaccari, S. LaRochelle, J. Azana, and L. R. Chen, Opt. Lett. 30, 2062 (2005).
    [CrossRef] [PubMed]
  5. J. Yang, S. C. Tjin, and N. Q. Ngo, IEEE Photon. Technol. Lett. 16, 1026 (2004).
    [CrossRef]
  6. Y. G. Han, C. S. Kim, J. U. Kang, U. C. Paek, and Y. Chung, IEEE Photon. Technol. Lett. 15, 383 (2003).
    [CrossRef]
  7. B. H. Lee and J. Nishii, Appl. Opt. 38, 3450 (1999).
    [CrossRef]
  8. Y. G. Han, G. Kim, J. H. Lee, S. H. Kim, and S. B. Lee, IEEE Photon. Technol. Lett. 17, 989 (2005).
    [CrossRef]
  9. G. Das and J. W. Y. Lit, IEEE Photon. Technol. Lett. 16, 60 (2004).
    [CrossRef]
  10. C. S. Kim and J. U. Kang, Appl. Opt. 43, 3151 (2004).
    [CrossRef] [PubMed]
  11. X. Dong, P. Shum, C. C. Chan, and X. Yang, IEEE Photon. Technol. Lett. 18, 184 (2006).
    [CrossRef]

2006 (1)

X. Dong, P. Shum, C. C. Chan, and X. Yang, IEEE Photon. Technol. Lett. 18, 184 (2006).
[CrossRef]

2005 (3)

Y. Dai, X. Chen, X. Xu, C. Fan, and S. Xie, IEEE Photon. Technol. Lett. 17, 1040 (2005).
[CrossRef]

Y. G. Han, G. Kim, J. H. Lee, S. H. Kim, and S. B. Lee, IEEE Photon. Technol. Lett. 17, 989 (2005).
[CrossRef]

J. Magne, P. Biaccari, S. LaRochelle, J. Azana, and L. R. Chen, Opt. Lett. 30, 2062 (2005).
[CrossRef] [PubMed]

2004 (3)

C. S. Kim and J. U. Kang, Appl. Opt. 43, 3151 (2004).
[CrossRef] [PubMed]

G. Das and J. W. Y. Lit, IEEE Photon. Technol. Lett. 16, 60 (2004).
[CrossRef]

J. Yang, S. C. Tjin, and N. Q. Ngo, IEEE Photon. Technol. Lett. 16, 1026 (2004).
[CrossRef]

2003 (2)

Y. G. Han, C. S. Kim, J. U. Kang, U. C. Paek, and Y. Chung, IEEE Photon. Technol. Lett. 15, 383 (2003).
[CrossRef]

R. Slavik, S. Doucet, and S. LaRochelle, J. Lightwave Technol. 21, 1059 (2003).
[CrossRef]

1999 (1)

1995 (1)

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, IEEE Photon. Technol. Lett. 7, 78 (1995).
[CrossRef]

Azana, J.

Bennion, I.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, IEEE Photon. Technol. Lett. 7, 78 (1995).
[CrossRef]

Biaccari, P.

Chan, C. C.

X. Dong, P. Shum, C. C. Chan, and X. Yang, IEEE Photon. Technol. Lett. 18, 184 (2006).
[CrossRef]

Chen, L. R.

Chen, X.

Y. Dai, X. Chen, X. Xu, C. Fan, and S. Xie, IEEE Photon. Technol. Lett. 17, 1040 (2005).
[CrossRef]

Chung, Y.

Y. G. Han, C. S. Kim, J. U. Kang, U. C. Paek, and Y. Chung, IEEE Photon. Technol. Lett. 15, 383 (2003).
[CrossRef]

Dai, Y.

Y. Dai, X. Chen, X. Xu, C. Fan, and S. Xie, IEEE Photon. Technol. Lett. 17, 1040 (2005).
[CrossRef]

Das, G.

G. Das and J. W. Y. Lit, IEEE Photon. Technol. Lett. 16, 60 (2004).
[CrossRef]

Dong, X.

X. Dong, P. Shum, C. C. Chan, and X. Yang, IEEE Photon. Technol. Lett. 18, 184 (2006).
[CrossRef]

Doucet, S.

Fan, C.

Y. Dai, X. Chen, X. Xu, C. Fan, and S. Xie, IEEE Photon. Technol. Lett. 17, 1040 (2005).
[CrossRef]

Han, Y. G.

Y. G. Han, G. Kim, J. H. Lee, S. H. Kim, and S. B. Lee, IEEE Photon. Technol. Lett. 17, 989 (2005).
[CrossRef]

Y. G. Han, C. S. Kim, J. U. Kang, U. C. Paek, and Y. Chung, IEEE Photon. Technol. Lett. 15, 383 (2003).
[CrossRef]

Kang, J. U.

C. S. Kim and J. U. Kang, Appl. Opt. 43, 3151 (2004).
[CrossRef] [PubMed]

Y. G. Han, C. S. Kim, J. U. Kang, U. C. Paek, and Y. Chung, IEEE Photon. Technol. Lett. 15, 383 (2003).
[CrossRef]

Kim, C. S.

C. S. Kim and J. U. Kang, Appl. Opt. 43, 3151 (2004).
[CrossRef] [PubMed]

Y. G. Han, C. S. Kim, J. U. Kang, U. C. Paek, and Y. Chung, IEEE Photon. Technol. Lett. 15, 383 (2003).
[CrossRef]

Kim, G.

Y. G. Han, G. Kim, J. H. Lee, S. H. Kim, and S. B. Lee, IEEE Photon. Technol. Lett. 17, 989 (2005).
[CrossRef]

Kim, S. H.

Y. G. Han, G. Kim, J. H. Lee, S. H. Kim, and S. B. Lee, IEEE Photon. Technol. Lett. 17, 989 (2005).
[CrossRef]

LaRochelle, S.

Lee, B. H.

Lee, J. H.

Y. G. Han, G. Kim, J. H. Lee, S. H. Kim, and S. B. Lee, IEEE Photon. Technol. Lett. 17, 989 (2005).
[CrossRef]

Lee, S. B.

Y. G. Han, G. Kim, J. H. Lee, S. H. Kim, and S. B. Lee, IEEE Photon. Technol. Lett. 17, 989 (2005).
[CrossRef]

Lit, J. W. Y.

G. Das and J. W. Y. Lit, IEEE Photon. Technol. Lett. 16, 60 (2004).
[CrossRef]

Magne, J.

Ngo, N. Q.

J. Yang, S. C. Tjin, and N. Q. Ngo, IEEE Photon. Technol. Lett. 16, 1026 (2004).
[CrossRef]

Nishii, J.

Paek, U. C.

Y. G. Han, C. S. Kim, J. U. Kang, U. C. Paek, and Y. Chung, IEEE Photon. Technol. Lett. 15, 383 (2003).
[CrossRef]

Poole, S. B.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, IEEE Photon. Technol. Lett. 7, 78 (1995).
[CrossRef]

Shum, P.

X. Dong, P. Shum, C. C. Chan, and X. Yang, IEEE Photon. Technol. Lett. 18, 184 (2006).
[CrossRef]

Slavik, R.

Sugden, K.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, IEEE Photon. Technol. Lett. 7, 78 (1995).
[CrossRef]

Tjin, S. C.

J. Yang, S. C. Tjin, and N. Q. Ngo, IEEE Photon. Technol. Lett. 16, 1026 (2004).
[CrossRef]

Town, G. E.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, IEEE Photon. Technol. Lett. 7, 78 (1995).
[CrossRef]

Williams, J. A. R.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, IEEE Photon. Technol. Lett. 7, 78 (1995).
[CrossRef]

Xie, S.

Y. Dai, X. Chen, X. Xu, C. Fan, and S. Xie, IEEE Photon. Technol. Lett. 17, 1040 (2005).
[CrossRef]

Xu, X.

Y. Dai, X. Chen, X. Xu, C. Fan, and S. Xie, IEEE Photon. Technol. Lett. 17, 1040 (2005).
[CrossRef]

Yang, J.

J. Yang, S. C. Tjin, and N. Q. Ngo, IEEE Photon. Technol. Lett. 16, 1026 (2004).
[CrossRef]

Yang, X.

X. Dong, P. Shum, C. C. Chan, and X. Yang, IEEE Photon. Technol. Lett. 18, 184 (2006).
[CrossRef]

Appl. Opt. (2)

IEEE Photon. Technol. Lett. (7)

X. Dong, P. Shum, C. C. Chan, and X. Yang, IEEE Photon. Technol. Lett. 18, 184 (2006).
[CrossRef]

Y. G. Han, G. Kim, J. H. Lee, S. H. Kim, and S. B. Lee, IEEE Photon. Technol. Lett. 17, 989 (2005).
[CrossRef]

G. Das and J. W. Y. Lit, IEEE Photon. Technol. Lett. 16, 60 (2004).
[CrossRef]

J. Yang, S. C. Tjin, and N. Q. Ngo, IEEE Photon. Technol. Lett. 16, 1026 (2004).
[CrossRef]

Y. G. Han, C. S. Kim, J. U. Kang, U. C. Paek, and Y. Chung, IEEE Photon. Technol. Lett. 15, 383 (2003).
[CrossRef]

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, IEEE Photon. Technol. Lett. 7, 78 (1995).
[CrossRef]

Y. Dai, X. Chen, X. Xu, C. Fan, and S. Xie, IEEE Photon. Technol. Lett. 17, 1040 (2005).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Experimental configuration of the wavelength-spacing-tunable multichannel filter with the sampled CFBG. (b) and (c) Principle of symmetrical bending depending on the moving direction of the left translation.

Fig. 2
Fig. 2

Transmission spectra of the sampled CFBG as the left translation stage moves forward ( + y -direction). The wavelength spacing continuously increases in a range from 3.8 to 6.11 nm .

Fig. 3
Fig. 3

Transmission spectra of the sampled CFBG as the left translation stage moves backward ( y -direction). The wavelength spacing continuously decreases in a range from 3.8 to 1.51 nm .

Fig. 4
Fig. 4

Wavelength-spacing change as a function of the moving stage depending on the direction: (a) + y -direction, (b) y -direction.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ λ = λ p 2 2 n eff P B B 0 = Δ λ 0 [ 1 + 1 B 0 λ p ( 1 ρ e ) 6 y t L 3 ( L 2 x ) ] ,

Metrics