Abstract

We report the observation of light-enhanced electro-optic spectral tuning in annealed proton-exchanged, asymmetric domain-duty-cycle periodically poled lithium niobate (PPLN) channel waveguides for second-harmonic generation. The spectral tuning rate was increased rapidly from 0.07nm(kVmm) to a saturated value of 0.32nm(kVmm) in a 30%/70% domain-duty-cycle PPLN waveguide when the fundamental pump power near 1534nm was increased from 0.6 to 46mW. The second-harmonic laser power at 767nm was identified to be the source enhancing the spectral tuning.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
    [CrossRef]
  2. K. Parameswaran, J. Kurz, R. Roussev, and M. Fejer, Opt. Lett. 27, 43 (2002).
    [CrossRef]
  3. L. Myers, R. Eckardt, M. Fejer, R. Byer, W. Bosenberg, and J. Pierce, J. Opt. Soc. Am. B 12, 2102 (1995).
    [CrossRef]
  4. Y. C. Huang, K. W. Chang, Y. H. Chen, A. C. Chiang, T. C. Lin, and B. C. Wong, J. Lightwave Technol. 20, 1165 (2002).
    [CrossRef]
  5. N. O'Brien, M. Missey, P. Powers, and V. Dominic, Opt. Lett. 24, 1750 (1999).
    [CrossRef]
  6. D. J. M. Watts, G. M. Davis, P. G. J. May, and R. G. W. Brown, J. Appl. Phys. 79, 3793 (1996).
    [CrossRef]
  7. Y. H. Chen, F. C. Fan, Y. Y. Lin, Y. C. Huang, J. T. Shy, Y. P. Lan, and Y. F. Chen, Opt. Commun. 223, 417 (2003).
    [CrossRef]
  8. M. Taya, M. C. Bashaw, and M. M. Fejer, Opt. Lett. 21, 857 (1996).
    [CrossRef] [PubMed]
  9. M. Bortz and M. M. Fejer, Opt. Lett. 16, 1844 (1991).
    [CrossRef] [PubMed]
  10. I. Savatinova, S. Tonchev, R. Todorov, Mario N. Armenise, V. M. N. Passaro, and C. C. Ziling, J. Lightwave Technol. 14, 403 (1996).
    [CrossRef]
  11. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984), p. 232.
  12. D. Jundt, Opt. Lett. 22, 1553 (1997).
    [CrossRef]
  13. R. W. Boyd, Nonlinear Optics (Academic, 1992), p. 27.

2003 (1)

Y. H. Chen, F. C. Fan, Y. Y. Lin, Y. C. Huang, J. T. Shy, Y. P. Lan, and Y. F. Chen, Opt. Commun. 223, 417 (2003).
[CrossRef]

2002 (2)

1999 (1)

1997 (1)

1996 (3)

D. J. M. Watts, G. M. Davis, P. G. J. May, and R. G. W. Brown, J. Appl. Phys. 79, 3793 (1996).
[CrossRef]

M. Taya, M. C. Bashaw, and M. M. Fejer, Opt. Lett. 21, 857 (1996).
[CrossRef] [PubMed]

I. Savatinova, S. Tonchev, R. Todorov, Mario N. Armenise, V. M. N. Passaro, and C. C. Ziling, J. Lightwave Technol. 14, 403 (1996).
[CrossRef]

1995 (1)

1991 (1)

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Armenise, Mario N.

I. Savatinova, S. Tonchev, R. Todorov, Mario N. Armenise, V. M. N. Passaro, and C. C. Ziling, J. Lightwave Technol. 14, 403 (1996).
[CrossRef]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Bashaw, M. C.

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Bortz, M.

Bosenberg, W.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 1992), p. 27.

Brown, R. G. W.

D. J. M. Watts, G. M. Davis, P. G. J. May, and R. G. W. Brown, J. Appl. Phys. 79, 3793 (1996).
[CrossRef]

Byer, R.

Chang, K. W.

Chen, Y. F.

Y. H. Chen, F. C. Fan, Y. Y. Lin, Y. C. Huang, J. T. Shy, Y. P. Lan, and Y. F. Chen, Opt. Commun. 223, 417 (2003).
[CrossRef]

Chen, Y. H.

Y. H. Chen, F. C. Fan, Y. Y. Lin, Y. C. Huang, J. T. Shy, Y. P. Lan, and Y. F. Chen, Opt. Commun. 223, 417 (2003).
[CrossRef]

Y. C. Huang, K. W. Chang, Y. H. Chen, A. C. Chiang, T. C. Lin, and B. C. Wong, J. Lightwave Technol. 20, 1165 (2002).
[CrossRef]

Chiang, A. C.

Davis, G. M.

D. J. M. Watts, G. M. Davis, P. G. J. May, and R. G. W. Brown, J. Appl. Phys. 79, 3793 (1996).
[CrossRef]

Dominic, V.

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Eckardt, R.

Fan, F. C.

Y. H. Chen, F. C. Fan, Y. Y. Lin, Y. C. Huang, J. T. Shy, Y. P. Lan, and Y. F. Chen, Opt. Commun. 223, 417 (2003).
[CrossRef]

Fejer, M.

Fejer, M. M.

Huang, Y. C.

Y. H. Chen, F. C. Fan, Y. Y. Lin, Y. C. Huang, J. T. Shy, Y. P. Lan, and Y. F. Chen, Opt. Commun. 223, 417 (2003).
[CrossRef]

Y. C. Huang, K. W. Chang, Y. H. Chen, A. C. Chiang, T. C. Lin, and B. C. Wong, J. Lightwave Technol. 20, 1165 (2002).
[CrossRef]

Jundt, D.

Kurz, J.

Lan, Y. P.

Y. H. Chen, F. C. Fan, Y. Y. Lin, Y. C. Huang, J. T. Shy, Y. P. Lan, and Y. F. Chen, Opt. Commun. 223, 417 (2003).
[CrossRef]

Lin, T. C.

Lin, Y. Y.

Y. H. Chen, F. C. Fan, Y. Y. Lin, Y. C. Huang, J. T. Shy, Y. P. Lan, and Y. F. Chen, Opt. Commun. 223, 417 (2003).
[CrossRef]

May, P. G. J.

D. J. M. Watts, G. M. Davis, P. G. J. May, and R. G. W. Brown, J. Appl. Phys. 79, 3793 (1996).
[CrossRef]

Missey, M.

Myers, L.

O'Brien, N.

Parameswaran, K.

Passaro, V. M. N.

I. Savatinova, S. Tonchev, R. Todorov, Mario N. Armenise, V. M. N. Passaro, and C. C. Ziling, J. Lightwave Technol. 14, 403 (1996).
[CrossRef]

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Pierce, J.

Powers, P.

Roussev, R.

Savatinova, I.

I. Savatinova, S. Tonchev, R. Todorov, Mario N. Armenise, V. M. N. Passaro, and C. C. Ziling, J. Lightwave Technol. 14, 403 (1996).
[CrossRef]

Shy, J. T.

Y. H. Chen, F. C. Fan, Y. Y. Lin, Y. C. Huang, J. T. Shy, Y. P. Lan, and Y. F. Chen, Opt. Commun. 223, 417 (2003).
[CrossRef]

Taya, M.

Todorov, R.

I. Savatinova, S. Tonchev, R. Todorov, Mario N. Armenise, V. M. N. Passaro, and C. C. Ziling, J. Lightwave Technol. 14, 403 (1996).
[CrossRef]

Tonchev, S.

I. Savatinova, S. Tonchev, R. Todorov, Mario N. Armenise, V. M. N. Passaro, and C. C. Ziling, J. Lightwave Technol. 14, 403 (1996).
[CrossRef]

Watts, D. J. M.

D. J. M. Watts, G. M. Davis, P. G. J. May, and R. G. W. Brown, J. Appl. Phys. 79, 3793 (1996).
[CrossRef]

Wong, B. C.

Yariv, A.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984), p. 232.

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984), p. 232.

Ziling, C. C.

I. Savatinova, S. Tonchev, R. Todorov, Mario N. Armenise, V. M. N. Passaro, and C. C. Ziling, J. Lightwave Technol. 14, 403 (1996).
[CrossRef]

J. Appl. Phys. (1)

D. J. M. Watts, G. M. Davis, P. G. J. May, and R. G. W. Brown, J. Appl. Phys. 79, 3793 (1996).
[CrossRef]

J. Lightwave Technol. (2)

I. Savatinova, S. Tonchev, R. Todorov, Mario N. Armenise, V. M. N. Passaro, and C. C. Ziling, J. Lightwave Technol. 14, 403 (1996).
[CrossRef]

Y. C. Huang, K. W. Chang, Y. H. Chen, A. C. Chiang, T. C. Lin, and B. C. Wong, J. Lightwave Technol. 20, 1165 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

Y. H. Chen, F. C. Fan, Y. Y. Lin, Y. C. Huang, J. T. Shy, Y. P. Lan, and Y. F. Chen, Opt. Commun. 223, 417 (2003).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Other (2)

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984), p. 232.

R. W. Boyd, Nonlinear Optics (Academic, 1992), p. 27.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Cross-sectional view of the electrode-coated PPLN waveguide (left, schematic; right, photograph). To reduce the EO tuning voltage, a 300 μ m deep trench was cut on the back side of the waveguide.

Fig. 2
Fig. 2

SHG tuning curves at low ( 1.3 mW ) and high ( 43 mW ) pump powers in the 65%/35% duty-cycle PPLN waveguide. The wavelength shift between the high-power and the low-power curves is due to the photorefractive internal field [see Eq. (2)].

Fig. 3
Fig. 3

Fundamental-wavelength shift versus applied electric field with 1.5 mW (open circles) and 40 mW (filled circles) fundamental-wave power in the 65%/35% duty-cycle PPLN waveguide. The wavelength shift is apparently larger with 40 mW pump power in the waveguide.

Fig. 4
Fig. 4

EO tuning rate versus fundamental-wave power for the 70%/30% duty-cycle PPLN waveguide. The tuning rate was enhanced more than four times when the fundamental-wave power was increased from 0.6 to 46 mW .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ λ ω = Δ λ in , ω + Δ λ ex , ω ,
Δ λ in , ω = α ( r 33 , 2 ω n e , 2 ω 3 r 33 , ω n e , ω 3 ) E in ( L 2 + L 1 )
Δ λ ex , ω = α ( r 33 , 2 ω n e , 2 ω 3 r 33 , ω n e , ω 3 ) E z , ex ( L 2 L 1 )

Metrics