Abstract

We have analyzed the image formation and dynamic properties in laser speckle imaging (LSI) both experimentally and with Monte Carlo simulation. We show for the case of a liquid inclusion that the spatial resolution and the signal itself are both significantly affected by scattering from the turbid environment. Multiple scattering leads to blurring of the dynamic inhomogeneity as detected by LSI. The presence of a nonfluctuating component of scattered light results in the significant increase in the measured image contrast and complicates the estimation of the relaxation time. We present a refined processing scheme that allows a correct estimation of the relaxation time from LSI data.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Briers, Physiol. Meas 22, R35 (2001).
    [CrossRef]
  2. B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck, Eur. J. Neurosci. 20, 2664 (2004).
    [CrossRef] [PubMed]
  3. T. Durduran, M. G. Burnett, C. Zhou, G. Yu, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, J. Cereb. Blood Flow Metab. 24, 518 (2004).
    [CrossRef] [PubMed]
  4. A. Dunn, A. Devor, M. Andermann, H. Bolay, M. Moskowitz, A. Dale, and D. Boas, Opt. Lett. 28, 28 (2003).
    [CrossRef] [PubMed]
  5. A. C. Völker, P. Zakharov, B. Weber, F. Buck, and F. Scheffold, Opt. Express 13, 9782 (2005).
    [CrossRef] [PubMed]
  6. B. J. Berne and R. Pecora, Dynamic Light Scattering. With Applications to Chemistry, Biology, and Physics (Dover, 2000).
  7. D. J. Durian, Phys. Rev. E 51, 3350 (1995).
    [CrossRef]
  8. Brackets ⟨⟩ denote the ensemble average. In practice this average can be obtained by a spatial or temporal analysis of the intensity fluctuations, for details see Refs.
  9. S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, in Proc. SPIE 5, 102 (1989).
  10. D. A. Zimnyakov, Waves Random Media 10, 417 (2000).
    [CrossRef]
  11. K. Schätzel, Quantum Opt. 2, 287 (1990).
    [CrossRef]
  12. R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, Rev. Sci. Instrum. 76, 093110 (2005).
    [CrossRef]
  13. M. Heckmeier and G. Maret, Europhys. Lett. 34, 257 (1996).
    [CrossRef]
  14. H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, Phys. Med. Biol. 49, 1347 (2004).
    [CrossRef] [PubMed]
  15. D. A. Boas and A. G. Yodh, J. Opt. Soc. Am. A 14, 192 (1997).
    [CrossRef]
  16. We note that our results are in contradiction to previous claims that simply analyzing dynamic speckles eliminates the contamination due to stationary speckles as reported by P. Li, S. Ni, L. Zhang, S. Zeng, and Q. Luo, Opt. Lett. 31, 1824 (2006).
    [PubMed]

2006 (1)

2005 (2)

A. C. Völker, P. Zakharov, B. Weber, F. Buck, and F. Scheffold, Opt. Express 13, 9782 (2005).
[CrossRef] [PubMed]

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, Rev. Sci. Instrum. 76, 093110 (2005).
[CrossRef]

2004 (3)

B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck, Eur. J. Neurosci. 20, 2664 (2004).
[CrossRef] [PubMed]

T. Durduran, M. G. Burnett, C. Zhou, G. Yu, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, J. Cereb. Blood Flow Metab. 24, 518 (2004).
[CrossRef] [PubMed]

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, Phys. Med. Biol. 49, 1347 (2004).
[CrossRef] [PubMed]

2003 (1)

2001 (1)

J. D. Briers, Physiol. Meas 22, R35 (2001).
[CrossRef]

2000 (1)

D. A. Zimnyakov, Waves Random Media 10, 417 (2000).
[CrossRef]

1997 (1)

1996 (1)

M. Heckmeier and G. Maret, Europhys. Lett. 34, 257 (1996).
[CrossRef]

1995 (1)

D. J. Durian, Phys. Rev. E 51, 3350 (1995).
[CrossRef]

1990 (1)

K. Schätzel, Quantum Opt. 2, 287 (1990).
[CrossRef]

1989 (1)

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, in Proc. SPIE 5, 102 (1989).

Andermann, M.

Bandyopadhyay, R.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, Rev. Sci. Instrum. 76, 093110 (2005).
[CrossRef]

Berne, B. J.

B. J. Berne and R. Pecora, Dynamic Light Scattering. With Applications to Chemistry, Biology, and Physics (Dover, 2000).

Boas, D.

Boas, D. A.

Bolay, H.

Briers, J. D.

J. D. Briers, Physiol. Meas 22, R35 (2001).
[CrossRef]

Buck, A.

B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck, Eur. J. Neurosci. 20, 2664 (2004).
[CrossRef] [PubMed]

Buck, F.

Burger, C.

B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck, Eur. J. Neurosci. 20, 2664 (2004).
[CrossRef] [PubMed]

Burnett, M. G.

T. Durduran, M. G. Burnett, C. Zhou, G. Yu, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, J. Cereb. Blood Flow Metab. 24, 518 (2004).
[CrossRef] [PubMed]

Cheng, H.

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, Phys. Med. Biol. 49, 1347 (2004).
[CrossRef] [PubMed]

Dale, A.

Detre, J. A.

T. Durduran, M. G. Burnett, C. Zhou, G. Yu, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, J. Cereb. Blood Flow Metab. 24, 518 (2004).
[CrossRef] [PubMed]

Devor, A.

Dixon, P. K.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, Rev. Sci. Instrum. 76, 093110 (2005).
[CrossRef]

Dunn, A.

Durduran, T.

T. Durduran, M. G. Burnett, C. Zhou, G. Yu, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, J. Cereb. Blood Flow Metab. 24, 518 (2004).
[CrossRef] [PubMed]

Durian, D. J.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, Rev. Sci. Instrum. 76, 093110 (2005).
[CrossRef]

D. J. Durian, Phys. Rev. E 51, 3350 (1995).
[CrossRef]

Furuya, D.

T. Durduran, M. G. Burnett, C. Zhou, G. Yu, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, J. Cereb. Blood Flow Metab. 24, 518 (2004).
[CrossRef] [PubMed]

Gittings, A. S.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, Rev. Sci. Instrum. 76, 093110 (2005).
[CrossRef]

Gong, H.

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, Phys. Med. Biol. 49, 1347 (2004).
[CrossRef] [PubMed]

Greenberg, J. H.

T. Durduran, M. G. Burnett, C. Zhou, G. Yu, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, J. Cereb. Blood Flow Metab. 24, 518 (2004).
[CrossRef] [PubMed]

Heckmeier, M.

M. Heckmeier and G. Maret, Europhys. Lett. 34, 257 (1996).
[CrossRef]

Jacques, S. L.

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, in Proc. SPIE 5, 102 (1989).

Keijzer, M.

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, in Proc. SPIE 5, 102 (1989).

Li, P.

Liu, Q.

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, Phys. Med. Biol. 49, 1347 (2004).
[CrossRef] [PubMed]

Lu, Q.

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, Phys. Med. Biol. 49, 1347 (2004).
[CrossRef] [PubMed]

Luo, Q.

Maret, G.

M. Heckmeier and G. Maret, Europhys. Lett. 34, 257 (1996).
[CrossRef]

Moskowitz, M.

Ni, S.

Pecora, R.

B. J. Berne and R. Pecora, Dynamic Light Scattering. With Applications to Chemistry, Biology, and Physics (Dover, 2000).

Prahl, S. A.

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, in Proc. SPIE 5, 102 (1989).

Schätzel, K.

K. Schätzel, Quantum Opt. 2, 287 (1990).
[CrossRef]

Scheffold, F.

A. C. Völker, P. Zakharov, B. Weber, F. Buck, and F. Scheffold, Opt. Express 13, 9782 (2005).
[CrossRef] [PubMed]

B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck, Eur. J. Neurosci. 20, 2664 (2004).
[CrossRef] [PubMed]

Suh, S. S.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, Rev. Sci. Instrum. 76, 093110 (2005).
[CrossRef]

Völker, A. C.

von Schulthess, G. K.

B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck, Eur. J. Neurosci. 20, 2664 (2004).
[CrossRef] [PubMed]

Weber, B.

A. C. Völker, P. Zakharov, B. Weber, F. Buck, and F. Scheffold, Opt. Express 13, 9782 (2005).
[CrossRef] [PubMed]

B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck, Eur. J. Neurosci. 20, 2664 (2004).
[CrossRef] [PubMed]

Welch, A. J.

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, in Proc. SPIE 5, 102 (1989).

Wyss, M. T.

B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck, Eur. J. Neurosci. 20, 2664 (2004).
[CrossRef] [PubMed]

Yodh, A. G.

T. Durduran, M. G. Burnett, C. Zhou, G. Yu, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, J. Cereb. Blood Flow Metab. 24, 518 (2004).
[CrossRef] [PubMed]

D. A. Boas and A. G. Yodh, J. Opt. Soc. Am. A 14, 192 (1997).
[CrossRef]

Yu, G.

T. Durduran, M. G. Burnett, C. Zhou, G. Yu, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, J. Cereb. Blood Flow Metab. 24, 518 (2004).
[CrossRef] [PubMed]

Zakharov, P.

Zeng, S.

Zhang, L.

Zhou, C.

T. Durduran, M. G. Burnett, C. Zhou, G. Yu, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, J. Cereb. Blood Flow Metab. 24, 518 (2004).
[CrossRef] [PubMed]

Zimnyakov, D. A.

D. A. Zimnyakov, Waves Random Media 10, 417 (2000).
[CrossRef]

Eur. J. Neurosci. (1)

B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck, Eur. J. Neurosci. 20, 2664 (2004).
[CrossRef] [PubMed]

Europhys. Lett. (1)

M. Heckmeier and G. Maret, Europhys. Lett. 34, 257 (1996).
[CrossRef]

J. Cereb. Blood Flow Metab. (1)

T. Durduran, M. G. Burnett, C. Zhou, G. Yu, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, J. Cereb. Blood Flow Metab. 24, 518 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Opt. Express (1)

Opt. Lett. (2)

Phys. Med. Biol. (1)

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, Phys. Med. Biol. 49, 1347 (2004).
[CrossRef] [PubMed]

Phys. Rev. E (1)

D. J. Durian, Phys. Rev. E 51, 3350 (1995).
[CrossRef]

Physiol. Meas (1)

J. D. Briers, Physiol. Meas 22, R35 (2001).
[CrossRef]

Proc. SPIE (1)

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, in Proc. SPIE 5, 102 (1989).

Quantum Opt. (1)

K. Schätzel, Quantum Opt. 2, 287 (1990).
[CrossRef]

Rev. Sci. Instrum. (1)

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, Rev. Sci. Instrum. 76, 093110 (2005).
[CrossRef]

Waves Random Media (1)

D. A. Zimnyakov, Waves Random Media 10, 417 (2000).
[CrossRef]

Other (2)

Brackets ⟨⟩ denote the ensemble average. In practice this average can be obtained by a spatial or temporal analysis of the intensity fluctuations, for details see Refs.

B. J. Berne and R. Pecora, Dynamic Light Scattering. With Applications to Chemistry, Biology, and Physics (Dover, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Contrast K as a function of distance r from the center of the inclusion for different depths d. Curves, simulation results; symbols, experimental results; dotted line, inclusion boundary. Inset: Width of the liquid–solid boundary as a function of depth (•, simulation data; ◻, experiment. Line is a guide for the eye).

Fig. 2
Fig. 2

Simulated correlation functions for the inclusion depth d = 100 μ m (symbols). Solid curves: Fits with DWS theory including a baseline; τ 0 values for the fits were obtained by the contrast K inversion (see Fig. 3).

Fig. 3
Fig. 3

Inverse of the relaxation time 1 τ 0 as a function of depth obtained by directly converting the contrast K ( r 0 ) based on Eq. (1) neglecting the static part. •, simulation data; ▵, experiment; and using the correct procedure based on Eq. (3) ∎, simulation and ◇, experiment. Horizontal dashed line, actual value of the relaxation time 1 τ 0 72 s 1 .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

K 2 ( T ) = I 2 I 2 1 = 2 T 0 T β g 1 ( τ ) 2 ( 1 τ T ) d τ ,
g 1 ( τ ) = E ( τ ) E ( 0 ) E 2 = ( 1 ρ ) g 1 d ( τ ) + ρ ,
K 2 = 2 β T 0 T [ ( 1 ρ ) g 1 d ( τ ) + ρ ] 2 ( 1 τ T ) d τ = ( 1 ρ ) 2 K 2 d 2 + 2 ρ ( 1 ρ ) K 1 d 2 + β ρ 2 ,

Metrics