Abstract

We theoretically study channel plasmon-polaritons (CPPs) with a geometry similar to that in recent experiments at telecommunication wavelengths [ Bozhevolnyi et al., Nature 440, 508 (2006) ]. The CPP modal shape, dispersion relation, and losses are simulated by using the multiple multipole method and the finite difference time domain technique. It is shown that, with an increase of the wavelength, the fundamental CPP mode shifts progressively toward the groove opening, ceasing to be guided at the groove bottom and becoming hybridized with wedge plasmon-polaritons running along the groove edges.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, Opt. Lett. 22, 475 (1997).
    [CrossRef] [PubMed]
  2. P. Berini, Opt. Lett. 24, 1011 (1999).
    [CrossRef]
  3. D. F. P. Pile and D. K. Gramotnev, Opt. Lett. 29, 1069 (2004).
    [CrossRef] [PubMed]
  4. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, Appl. Phys. Lett. 87, 061106 (2005).
    [CrossRef]
  5. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, Appl. Phys. Lett. 87, 261114 (2005).
    [CrossRef]
  6. I. V. Novikov and A. A. Maradudin, Phys. Rev. B 66, 035403 (2002).
    [CrossRef]
  7. D. F. P. Pile and D. K. Gramotnev, Opt. Lett. 30, 1186 (2005).
    [CrossRef] [PubMed]
  8. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, Phys. Rev. Lett. 95, 046802 (2005).
    [CrossRef] [PubMed]
  9. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
    [CrossRef] [PubMed]
  10. C. Hafner, Post-Modern Electromagnetics (Wiley, 1999).
  11. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).
  12. A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. Lamy de la Chapelle, Phys. Rev. B 71, 085416 (2005).
    [CrossRef]
  13. D. K. Gramotnev and D. F. P. Pile, Appl. Phys. Lett. 85, 266323 (2004).
    [CrossRef]
  14. V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, Opt. Express 14, 4494 (2006).
    [CrossRef] [PubMed]

2006 (2)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, Opt. Express 14, 4494 (2006).
[CrossRef] [PubMed]

2005 (5)

D. F. P. Pile and D. K. Gramotnev, Opt. Lett. 30, 1186 (2005).
[CrossRef] [PubMed]

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. Lamy de la Chapelle, Phys. Rev. B 71, 085416 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

2004 (2)

D. K. Gramotnev and D. F. P. Pile, Appl. Phys. Lett. 85, 266323 (2004).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, Opt. Lett. 29, 1069 (2004).
[CrossRef] [PubMed]

2002 (1)

I. V. Novikov and A. A. Maradudin, Phys. Rev. B 66, 035403 (2002).
[CrossRef]

1999 (1)

1997 (1)

Barchiesi, D.

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. Lamy de la Chapelle, Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Berini, P.

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, Opt. Express 14, 4494 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, Opt. Express 14, 4494 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, Opt. Express 14, 4494 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Fukui, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

Gramotnev, D. K.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, Opt. Lett. 30, 1186 (2005).
[CrossRef] [PubMed]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

D. K. Gramotnev and D. F. P. Pile, Appl. Phys. Lett. 85, 266323 (2004).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, Opt. Lett. 29, 1069 (2004).
[CrossRef] [PubMed]

Grimault, A.-S.

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. Lamy de la Chapelle, Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Hafner, C.

C. Hafner, Post-Modern Electromagnetics (Wiley, 1999).

Hagness, S.

A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).

Haraguchi, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

Kobayashi, T.

Laluet, J.-Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
[CrossRef] [PubMed]

Lamy de la Chapelle, M.

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. Lamy de la Chapelle, Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Macias, D.

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. Lamy de la Chapelle, Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Maradudin, A. A.

I. V. Novikov and A. A. Maradudin, Phys. Rev. B 66, 035403 (2002).
[CrossRef]

Matsuo, S.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

Matsuzaki, Y.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

Morimoto, A.

Novikov, I. V.

I. V. Novikov and A. A. Maradudin, Phys. Rev. B 66, 035403 (2002).
[CrossRef]

Ogawa, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

Okamoto, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

Pile, D. F. P.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, Opt. Lett. 30, 1186 (2005).
[CrossRef] [PubMed]

D. F. P. Pile and D. K. Gramotnev, Opt. Lett. 29, 1069 (2004).
[CrossRef] [PubMed]

D. K. Gramotnev and D. F. P. Pile, Appl. Phys. Lett. 85, 266323 (2004).
[CrossRef]

Taflove, A.

A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).

Takahara, J.

Taki, H.

Vernon, K. C.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

Vial, A.

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. Lamy de la Chapelle, Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, Opt. Express 14, 4494 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Yamagishi, S.

Yamaguchi, K.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

Appl. Phys. Lett. (3)

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

D. K. Gramotnev and D. F. P. Pile, Appl. Phys. Lett. 85, 266323 (2004).
[CrossRef]

Nature (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. B (2)

I. V. Novikov and A. A. Maradudin, Phys. Rev. B 66, 035403 (2002).
[CrossRef]

A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. Lamy de la Chapelle, Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Other (2)

C. Hafner, Post-Modern Electromagnetics (Wiley, 1999).

A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Dispersion relation for various modes. Black thick curve, SPP mode on a flat surface; green curves (squares), CPP ( ) modes for an infinitely deep groove; red curve (open circles), WPP ( ) mode for an infinitely deep wedge; right-hand insets, time averaged electric field of the two CPP ( ) modes at 0.6 μ m ; left-hand inset, same for the WPP ( ) mode. The lateral size of the insets is 2 μ m .

Fig. 2
Fig. 2

Dispersion relation for various modes. Black thick curve, SPP mode on a flat surface; blue curves (filled circles), CPP modes for a groove of height 1.172 μ m (computed with MMP method); triangles, the same computed with the FDTD method; red curve (open circles), WPP ( ) mode for an infinitely deep wedge; insets, time averaged electric field of the two CPP modes at 0.6 μ m . The lateral size of the insets is 2 μ m .

Fig. 3
Fig. 3

Modal shape of the CPP fundamental mode for increasing wavelength λ. (a) λ = 0.6 μ m , (b) λ = 1 μ m , (c) λ = 1.4 μ m (close to cutoff). These panels display the time averaged electric field. (d) Instantaneous transverse electric field at λ = 1.4 μ m for a structure with groove edges rounded with a 100 nm radius of curvature. All panels have a lateral size of 2 μ m .

Fig. 4
Fig. 4

Propagation length versus wavelength for various modes. Black thick curve, SPP mode on a flat surface; blue curve (filled circles), CPP fundamental mode for a groove of height 1.172 μ m ; green curve (squares), CPP ( ) fundamental mode for an infinitely deep groove; red curve (open circles), WPP ( ) mode for an infinitely deep wedge.

Metrics