Abstract

We have numerically investigated the behavior of the fundamental mode of a step-index, multimode (MM) fiber as the optical power approaches the self-focusing limit (Pcrit). The analysis includes the effects of gain and bending (applicable to coiled fiber amplifiers). We find power-dependent, stationary solutions that propagate essentially without change at beam powers approaching Pcrit in straight and bent fibers. We show that in a MM fiber amplifier seeded with its fundamental eigenmode at powers Pcrit, the transverse spatial profile adiabatically evolves through a continuum of stationary solutions as the beam is amplified toward Pcrit.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Brown, J. Nilsson, D. J. Harter, and A. Tünnermann, eds., Proc. SPIE 6102 (2006).
  2. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, Opt. Lett. 25, 442 (2000).
    [CrossRef]
  3. F. Di Teodoro, J. P. Koplow, S. W. Moore, and D. A. V. Kliner, Opt. Lett. 27, 518 (2002).
    [CrossRef]
  4. G. R. Hadley, R. L. Farrow, and A. V. Smith, in Proc. SPIE 6102, 61021S (2006).
  5. J. M. Fini, Opt. Express 14, 69 (2006).
    [CrossRef] [PubMed]
  6. E. A. Romanova, L. A. Melnikov, and E. V. Bekker, Microwave Opt. Technol. Lett. 30, 212 (2001).
    [CrossRef]
  7. J. T. Manassah, P. T. Baldeck, and R. R. Alfano, Opt. Lett. 13, 589 (1988).
    [CrossRef] [PubMed]
  8. M. Karlsson, D. Anderson, and M. Desaix, Opt. Lett. 17, 22 (1992).
    [CrossRef] [PubMed]
  9. G. Fibich and F. Merle, Physica D 155, 132 (2001).
    [CrossRef]
  10. M. Igarashi and A. Galvanauskas, in Conference on Lasers and Electro-Optics, Vol. 96 of OSA Trends in Optics and Photonics (Optical Society of America, 2004), p. 513.
  11. G. Tempea and T. Brabec, Opt. Lett. 23, 762 (1998).
    [CrossRef]
  12. G. Fibich and A. L. Gaeta, Opt. Lett. 25, 335 (2000).
    [CrossRef]
  13. D. Marcuse, Appl. Opt. 21, 4208 (1982).
    [CrossRef] [PubMed]
  14. D. Milam, Appl. Opt. 37, 546 (1998).
    [CrossRef]

2006 (2)

A. J. Brown, J. Nilsson, D. J. Harter, and A. Tünnermann, eds., Proc. SPIE 6102 (2006).

J. M. Fini, Opt. Express 14, 69 (2006).
[CrossRef] [PubMed]

2002 (1)

2001 (2)

E. A. Romanova, L. A. Melnikov, and E. V. Bekker, Microwave Opt. Technol. Lett. 30, 212 (2001).
[CrossRef]

G. Fibich and F. Merle, Physica D 155, 132 (2001).
[CrossRef]

2000 (2)

1998 (2)

1992 (1)

1988 (1)

1982 (1)

Alfano, R. R.

Anderson, D.

Baldeck, P. T.

Bekker, E. V.

E. A. Romanova, L. A. Melnikov, and E. V. Bekker, Microwave Opt. Technol. Lett. 30, 212 (2001).
[CrossRef]

Brabec, T.

Brown, A. J.

A. J. Brown, J. Nilsson, D. J. Harter, and A. Tünnermann, eds., Proc. SPIE 6102 (2006).

Desaix, M.

Di Teodoro, F.

Farrow, R. L.

G. R. Hadley, R. L. Farrow, and A. V. Smith, in Proc. SPIE 6102, 61021S (2006).

Fibich, G.

G. Fibich and F. Merle, Physica D 155, 132 (2001).
[CrossRef]

G. Fibich and A. L. Gaeta, Opt. Lett. 25, 335 (2000).
[CrossRef]

Fini, J. M.

Gaeta, A. L.

Galvanauskas, A.

M. Igarashi and A. Galvanauskas, in Conference on Lasers and Electro-Optics, Vol. 96 of OSA Trends in Optics and Photonics (Optical Society of America, 2004), p. 513.

Goldberg, L.

Hadley, G. R.

G. R. Hadley, R. L. Farrow, and A. V. Smith, in Proc. SPIE 6102, 61021S (2006).

Harter, D. J.

A. J. Brown, J. Nilsson, D. J. Harter, and A. Tünnermann, eds., Proc. SPIE 6102 (2006).

Igarashi, M.

M. Igarashi and A. Galvanauskas, in Conference on Lasers and Electro-Optics, Vol. 96 of OSA Trends in Optics and Photonics (Optical Society of America, 2004), p. 513.

Karlsson, M.

Kliner, D. A. V.

Koplow, J. P.

Manassah, J. T.

Marcuse, D.

Melnikov, L. A.

E. A. Romanova, L. A. Melnikov, and E. V. Bekker, Microwave Opt. Technol. Lett. 30, 212 (2001).
[CrossRef]

Merle, F.

G. Fibich and F. Merle, Physica D 155, 132 (2001).
[CrossRef]

Milam, D.

Moore, S. W.

Nilsson, J.

A. J. Brown, J. Nilsson, D. J. Harter, and A. Tünnermann, eds., Proc. SPIE 6102 (2006).

Romanova, E. A.

E. A. Romanova, L. A. Melnikov, and E. V. Bekker, Microwave Opt. Technol. Lett. 30, 212 (2001).
[CrossRef]

Smith, A. V.

G. R. Hadley, R. L. Farrow, and A. V. Smith, in Proc. SPIE 6102, 61021S (2006).

Tempea, G.

Tünnermann, A.

A. J. Brown, J. Nilsson, D. J. Harter, and A. Tünnermann, eds., Proc. SPIE 6102 (2006).

Appl. Opt. (2)

Microwave Opt. Technol. Lett. (1)

E. A. Romanova, L. A. Melnikov, and E. V. Bekker, Microwave Opt. Technol. Lett. 30, 212 (2001).
[CrossRef]

Opt. Express (1)

Opt. Lett. (6)

Physica D (1)

G. Fibich and F. Merle, Physica D 155, 132 (2001).
[CrossRef]

Proc. SPIE (1)

A. J. Brown, J. Nilsson, D. J. Harter, and A. Tünnermann, eds., Proc. SPIE 6102 (2006).

Other (2)

G. R. Hadley, R. L. Farrow, and A. V. Smith, in Proc. SPIE 6102, 61021S (2006).

M. Igarashi and A. Galvanauskas, in Conference on Lasers and Electro-Optics, Vol. 96 of OSA Trends in Optics and Photonics (Optical Society of America, 2004), p. 513.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Propagation of an initial LP 01 eigenmode in a coiled fiber amplifier with a 0.84 cm bend radius for the final 0.58 cm before SF. The gain coefficient was 720 dB m . (a) 1 e 2 beam radius (solid curve, left axis) of the transverse profile (through the center of the fiber in the bend plane) and beam power (dashed curve, right logarithmic axis). (b) Transverse profiles along the bend plane for various beam powers.

Fig. 2
Fig. 2

(a) BPM calculations showing the longitudinal dependence of the 1 e 2 beam radius (along the bend plane) of 3 MW beams propagating unamplified in the coiled fiber. Dashed curve, propagation of the normal eigenmode ( LP 01 of the coiled waveguide). Solid curve and circles, propagation of high-power stationary solutions, whose irradiance profiles are shown in (b); small residual oscillations are a numerical artifact. (b) Spatial profiles of the fundamental LP 01 mode of a coiled fiber (dashed curve) and of high-power stationary solutions obtained from an iterative technique (circles) and by adiabatic amplification (solid curve intersecting the circles). The effective indices of the fundamental modes shown are denoted n eff .

Metrics