Abstract

A long-period fiber-grating sensor with a high strain sensitivity of 7.6pmμε and a low temperature sensitivity of 3.91pm°C is fabricated by use of focused CO2 laser beam to carve periodic grooves on a large- mode-area photonic crystal fiber. Such a strain sensor can effectively reduce the cross-sensitivity between strain and temperature, and the temperature-induced strain error obtained is only 0.5με°C without using temperature compensation.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Bhatia, D. K. Campbell, D. Sherr, T. G. DAlberto, N. A. Zabaronick, G. A. TenEyck, K. A. Murphy, and R. O. Claus, Opt. Eng. 36, 1872 (1997).
    [CrossRef]
  2. Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, and A. Z. Hu, IEEE Photon. Technol. Lett. 15, 251 (2003).
    [CrossRef]
  3. Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, J. Lightwave Technol. 21, 1320 (2003).
    [CrossRef]
  4. Y. Zhu, P. Shum, H. W. Bay, M. Yan, X. Yu, and J. Hu, Opt. Lett. 30, 367 (2005).
    [CrossRef] [PubMed]
  5. Y. Zhu, P. Shum, J. H. Chong, M. K. Rao, and C. Lu, Opt. Lett. 28, 2467 (2003).
    [CrossRef] [PubMed]
  6. C. Y. Lin, L. A. Wang, and G. W. Chern, J. Lightwave Technol. 19, 1159 (2001).
    [CrossRef]
  7. M. Vaziri and C. L. Chen, Appl. Opt. 32, 6399 (1993).
    [CrossRef] [PubMed]
  8. C. H. Lin, Q. Li, A. A. Au, Y. Jiang, E. B. Wu, and H. P. Lee, J. Lightwave Technol. 22, 1818 (2004).
    [CrossRef]

2005

2004

2003

2001

1997

V. Bhatia, D. K. Campbell, D. Sherr, T. G. DAlberto, N. A. Zabaronick, G. A. TenEyck, K. A. Murphy, and R. O. Claus, Opt. Eng. 36, 1872 (1997).
[CrossRef]

1993

Au, A. A.

Bay, H. W.

Bhatia, V.

V. Bhatia, D. K. Campbell, D. Sherr, T. G. DAlberto, N. A. Zabaronick, G. A. TenEyck, K. A. Murphy, and R. O. Claus, Opt. Eng. 36, 1872 (1997).
[CrossRef]

Campbell, D. K.

V. Bhatia, D. K. Campbell, D. Sherr, T. G. DAlberto, N. A. Zabaronick, G. A. TenEyck, K. A. Murphy, and R. O. Claus, Opt. Eng. 36, 1872 (1997).
[CrossRef]

Chen, C. L.

Chern, G. W.

Chong, J. H.

Claus, R. O.

V. Bhatia, D. K. Campbell, D. Sherr, T. G. DAlberto, N. A. Zabaronick, G. A. TenEyck, K. A. Murphy, and R. O. Claus, Opt. Eng. 36, 1872 (1997).
[CrossRef]

DAlberto, T. G.

V. Bhatia, D. K. Campbell, D. Sherr, T. G. DAlberto, N. A. Zabaronick, G. A. TenEyck, K. A. Murphy, and R. O. Claus, Opt. Eng. 36, 1872 (1997).
[CrossRef]

Hu, A. Z.

Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, and A. Z. Hu, IEEE Photon. Technol. Lett. 15, 251 (2003).
[CrossRef]

Hu, J.

Jiang, Y.

Lee, H. P.

Li, Q.

Lin, C. H.

Lin, C. Y.

Lu, C.

Murphy, K. A.

V. Bhatia, D. K. Campbell, D. Sherr, T. G. DAlberto, N. A. Zabaronick, G. A. TenEyck, K. A. Murphy, and R. O. Claus, Opt. Eng. 36, 1872 (1997).
[CrossRef]

Ran, Z. L.

Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, J. Lightwave Technol. 21, 1320 (2003).
[CrossRef]

Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, and A. Z. Hu, IEEE Photon. Technol. Lett. 15, 251 (2003).
[CrossRef]

Rao, M. K.

Rao, Y. J.

Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, and A. Z. Hu, IEEE Photon. Technol. Lett. 15, 251 (2003).
[CrossRef]

Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, J. Lightwave Technol. 21, 1320 (2003).
[CrossRef]

Sherr, D.

V. Bhatia, D. K. Campbell, D. Sherr, T. G. DAlberto, N. A. Zabaronick, G. A. TenEyck, K. A. Murphy, and R. O. Claus, Opt. Eng. 36, 1872 (1997).
[CrossRef]

Shum, P.

TenEyck, G. A.

V. Bhatia, D. K. Campbell, D. Sherr, T. G. DAlberto, N. A. Zabaronick, G. A. TenEyck, K. A. Murphy, and R. O. Claus, Opt. Eng. 36, 1872 (1997).
[CrossRef]

Vaziri, M.

Wang, L. A.

Wang, Y. P.

Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, J. Lightwave Technol. 21, 1320 (2003).
[CrossRef]

Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, and A. Z. Hu, IEEE Photon. Technol. Lett. 15, 251 (2003).
[CrossRef]

Wu, E. B.

Yan, M.

Yu, X.

Zabaronick, N. A.

V. Bhatia, D. K. Campbell, D. Sherr, T. G. DAlberto, N. A. Zabaronick, G. A. TenEyck, K. A. Murphy, and R. O. Claus, Opt. Eng. 36, 1872 (1997).
[CrossRef]

Zhu, T.

Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, and A. Z. Hu, IEEE Photon. Technol. Lett. 15, 251 (2003).
[CrossRef]

Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, J. Lightwave Technol. 21, 1320 (2003).
[CrossRef]

Zhu, Y.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for LPFG fabrication.

Fig. 2
Fig. 2

(a) Scanning electron micrograph of the cross section of the PCF employed. (b) CCD photograph of the LPFG with periodic grooves, obtained via a fiber fusion splicer from ERICSSON.

Fig. 3
Fig. 3

Transmission spectra evolution of the LPFG with the number, K, of scanning cycles increased from 1 to 9, where N = 40 and M = 5 .

Fig. 4
Fig. 4

Schematic of the CO 2 -laser-carved LPFG (a) before and (b) after a stretching force, F, is applied, where Λ, D, and W are the grating pitch, the depth, and width of the grooves, respectively.

Fig. 5
Fig. 5

Resonant wavelength of LPFG 1 and LPFG 2 via (a) the tensile strain and (b) the temperature. ◆, Dip 11 of LPFG 1 ; ∎, Dip 12 of LPFG 1 ; ▴, Dip 21 of LPFG 2 ; ×, Dip 22 of LPFG 2 .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ n = Δ n residual + Δ n groove + Δ n stretch ,
Δ n stretch = Δ n strain + Δ n microbend ,

Metrics