Abstract

A new method to measure the birefringence dispersion in high-birefringence polarization-maintaining fibers is presented using white-light interferometry. By analyzing broadening of low-coherence interferograms obtained in a scanning Michelson interferometer, the birefringence dispersion and its variation along different fiber sections are acquired with high sensitivity and accuracy. Birefringence dispersions of two PANDA fibers at their operation wavelength are measured to be 0.011ps(kmnm) and 0.018ps(kmnm), respectively. Distributed measurement capability of the method is also verified experimentally.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Shibata, A. Nakazono, and Y. Inoue, J. Lightwave Technol. 23, 1244 (2005).
    [CrossRef]
  2. K. Okamoto and T. Hosaka, Opt. Lett. 12, 290 (1987).
    [CrossRef] [PubMed]
  3. M. G. Shlyagin, A. V. Khomenko, and D. Tentori, Opt. Lett. 20, 869 (1995).
    [CrossRef] [PubMed]
  4. M. Tsubokawa, N. Shibata, T. Higashi, and S. Seikai, J. Opt. Soc. Am. A 4, 1895 (1987).
    [CrossRef]
  5. P. Hlubina, Opt. Express 11, 2793 (2003).
    [PubMed]
  6. P. Hlubina, M. Szpulak, L. Knyblova, G. Statkiewicz, T. Martynkien, D. Ciprian, and W. Urbanczyk, Meas. Sci. Technol. 17, 626 (2006).
    [CrossRef]
  7. P.-L. Francois, M. Monerie, C. Vassallo, Y. Durteste, and F. R. Alard, J. Lightwave Technol. 1, 500 (1989).
    [CrossRef]
  8. D. A. Flavin, R. McBride, and J. D. C. Jones, Opt. Lett. 27, 1010 (2002).
    [CrossRef]
  9. P. Martin, G. Le Boudec, and H. C. Lefevre, in Proc. SPIE 1585, 173 (1991).
    [CrossRef]
  10. T. H. Chua and C.-L. Chen, Appl. Opt. 28, 3158 (1989).
    [CrossRef] [PubMed]

2006 (1)

P. Hlubina, M. Szpulak, L. Knyblova, G. Statkiewicz, T. Martynkien, D. Ciprian, and W. Urbanczyk, Meas. Sci. Technol. 17, 626 (2006).
[CrossRef]

2005 (1)

2003 (1)

2002 (1)

1995 (1)

1991 (1)

P. Martin, G. Le Boudec, and H. C. Lefevre, in Proc. SPIE 1585, 173 (1991).
[CrossRef]

1989 (2)

P.-L. Francois, M. Monerie, C. Vassallo, Y. Durteste, and F. R. Alard, J. Lightwave Technol. 1, 500 (1989).
[CrossRef]

T. H. Chua and C.-L. Chen, Appl. Opt. 28, 3158 (1989).
[CrossRef] [PubMed]

1987 (2)

Alard, F. R.

P.-L. Francois, M. Monerie, C. Vassallo, Y. Durteste, and F. R. Alard, J. Lightwave Technol. 1, 500 (1989).
[CrossRef]

Chen, C.-L.

Chua, T. H.

Ciprian, D.

P. Hlubina, M. Szpulak, L. Knyblova, G. Statkiewicz, T. Martynkien, D. Ciprian, and W. Urbanczyk, Meas. Sci. Technol. 17, 626 (2006).
[CrossRef]

Durteste, Y.

P.-L. Francois, M. Monerie, C. Vassallo, Y. Durteste, and F. R. Alard, J. Lightwave Technol. 1, 500 (1989).
[CrossRef]

Flavin, D. A.

Francois, P.-L.

P.-L. Francois, M. Monerie, C. Vassallo, Y. Durteste, and F. R. Alard, J. Lightwave Technol. 1, 500 (1989).
[CrossRef]

Higashi, T.

Hlubina, P.

P. Hlubina, M. Szpulak, L. Knyblova, G. Statkiewicz, T. Martynkien, D. Ciprian, and W. Urbanczyk, Meas. Sci. Technol. 17, 626 (2006).
[CrossRef]

P. Hlubina, Opt. Express 11, 2793 (2003).
[PubMed]

Hosaka, T.

Inoue, Y.

Jones, J. D. C.

Khomenko, A. V.

Knyblova, L.

P. Hlubina, M. Szpulak, L. Knyblova, G. Statkiewicz, T. Martynkien, D. Ciprian, and W. Urbanczyk, Meas. Sci. Technol. 17, 626 (2006).
[CrossRef]

Le Boudec, G.

P. Martin, G. Le Boudec, and H. C. Lefevre, in Proc. SPIE 1585, 173 (1991).
[CrossRef]

Lefevre, H. C.

P. Martin, G. Le Boudec, and H. C. Lefevre, in Proc. SPIE 1585, 173 (1991).
[CrossRef]

Martin, P.

P. Martin, G. Le Boudec, and H. C. Lefevre, in Proc. SPIE 1585, 173 (1991).
[CrossRef]

Martynkien, T.

P. Hlubina, M. Szpulak, L. Knyblova, G. Statkiewicz, T. Martynkien, D. Ciprian, and W. Urbanczyk, Meas. Sci. Technol. 17, 626 (2006).
[CrossRef]

McBride, R.

Monerie, M.

P.-L. Francois, M. Monerie, C. Vassallo, Y. Durteste, and F. R. Alard, J. Lightwave Technol. 1, 500 (1989).
[CrossRef]

Nakazono, A.

Okamoto, K.

Seikai, S.

Shibata, N.

Shlyagin, M. G.

Statkiewicz, G.

P. Hlubina, M. Szpulak, L. Knyblova, G. Statkiewicz, T. Martynkien, D. Ciprian, and W. Urbanczyk, Meas. Sci. Technol. 17, 626 (2006).
[CrossRef]

Szpulak, M.

P. Hlubina, M. Szpulak, L. Knyblova, G. Statkiewicz, T. Martynkien, D. Ciprian, and W. Urbanczyk, Meas. Sci. Technol. 17, 626 (2006).
[CrossRef]

Tentori, D.

Tsubokawa, M.

Urbanczyk, W.

P. Hlubina, M. Szpulak, L. Knyblova, G. Statkiewicz, T. Martynkien, D. Ciprian, and W. Urbanczyk, Meas. Sci. Technol. 17, 626 (2006).
[CrossRef]

Vassallo, C.

P.-L. Francois, M. Monerie, C. Vassallo, Y. Durteste, and F. R. Alard, J. Lightwave Technol. 1, 500 (1989).
[CrossRef]

Appl. Opt. (1)

J. Lightwave Technol. (2)

P.-L. Francois, M. Monerie, C. Vassallo, Y. Durteste, and F. R. Alard, J. Lightwave Technol. 1, 500 (1989).
[CrossRef]

N. Shibata, A. Nakazono, and Y. Inoue, J. Lightwave Technol. 23, 1244 (2005).
[CrossRef]

J. Opt. Soc. Am. A (1)

Meas. Sci. Technol. (1)

P. Hlubina, M. Szpulak, L. Knyblova, G. Statkiewicz, T. Martynkien, D. Ciprian, and W. Urbanczyk, Meas. Sci. Technol. 17, 626 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Proc. SPIE (1)

P. Martin, G. Le Boudec, and H. C. Lefevre, in Proc. SPIE 1585, 173 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Birefringence dispersion measurement system: SLD, superluminescent diode; F, force; L1, L2, lenses; M1, M2, mirrors; BS, beam splitter; SM, stepper motor; A, analyzer; PD, photodiode; DAQ, data acquisition.

Fig. 2
Fig. 2

Broadening of interferogram due to birefringence dispersion.

Fig. 3
Fig. 3

Broadening of interferogram with two kinds of PANDA fiber spliced together.

Tables (1)

Tables Icon

Table 1 Birefringence Dispersion of Different Fiber Sections

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

γ d [ Δ n b ( λ ) l d ] = ( 1 + η 2 ) 1 4 exp { [ 2 ( Δ N b l d ) ( 1 + η 2 ) 1 2 W 0 ] 2 } ,
η = ( Δ λ λ 0 ) 2 2 π c ( Δ D ) l ,
Δ D = [ λ 0 2 ( 2 π c ) ] ( d 2 Δ β d λ 2 ) 0 ,
Δ D 1 2 π c l ( λ 0 Δ λ ) 2 ( W W 0 ) ,
Δ D 1 2 π c ( l 2 l 1 ) ( λ 0 Δ λ ) 2 ( W 2 W 1 W 0 ) .

Metrics