Abstract

We have measured nitric oxide (NO) concentrations in flames by using electronic-resonance-enhanced coherent anti-Stokes Raman spectroscopy (ERE-CARS). Visible pump and Stokes beams were tuned to a Q-branch vibrational Raman resonance of NO. A UV probe beam was tuned into resonance with specific rotational transitions in the (v=1,v=0) vibrational band in the A2Σ+X2Π electronic transition, thus providing a substantial electronic-resonance enhancement of the resulting CARS signal. NO concentrations were measured at levels down to 50 parts in 106 in H2air flames at atmospheric pressure. NO was also detected in heavily sooting C2H2air flames at atmospheric pressure with minimal background interference.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. S. Cooper and N. M. Laurendeau, Combust. Flame 123, 175 (2000).
    [CrossRef]
  2. S. V. Naik and N. M. Laurendeau, Combust. Sci. Technol. 176, 1809 (2004).
    [CrossRef]
  3. W. G. Bessler, C. Schluz, T. Lee, J. B. Jefferies, and R. K. Hanson, Appl. Opt. 42, 4922 (2003).
    [CrossRef] [PubMed]
  4. J. W. Daily, W. G. Besler, C. Schulz, V. Sick, and T. B. Settersten, AIAA J. 43, 458 (2005).
    [CrossRef]
  5. P. H. Paul, J. A. Gray, J. L. Durant, Jr., and J. W. Thoman, Jr., Chem. Phys. Lett. 259, 508 (1996).
    [CrossRef]
  6. R. L. Vander Wal, R. L. Farrow, and D. J. Rakestraw, in Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, 1992), p. 1653.
    [CrossRef]
  7. A. J. Grant, P. Ewart, and C. T. Stone, Appl. Phys. B 74, 105 (2002).
    [CrossRef]
  8. B. Löfstedt, R. Fritzon, and M. Aldén, Appl. Opt. 35, 2140 (1996).
    [CrossRef] [PubMed]
  9. A. Pott, T. Dorek, J. Uhlenbusch, J. Ehlbeck, J. Höschele, and J. Steinwandel, J. Phys. D 31, 2485 (1998).
    [CrossRef]
  10. S. F. Hanna, W. D. Kulatilaka, Z. Arp, T. Opatrný, M. O. Scully, J. P. Kuehner, and R. P. Lucht, Appl. Phys. Lett. 83, 1887 (2003).
    [CrossRef]
  11. W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, Combust. Flame 137, 523 (2004).
    [CrossRef]
  12. V. R. Katta, Innovative Scientific Solutions, Inc., 2766 Indian Ripple Road, Dayton, Ohio 45440 (personal communication).
  13. I. J. Wysong, J. B. Jeffries, and D. R. Crosley, Opt. Lett. 14, 767 (1989).
    [CrossRef] [PubMed]
  14. Q. V. Nguyen, R. W. Dibble, C. D. Carter, G. J. Fiechtner, and R. S. Barlow, Combust. Flame 105, 499 (1996).
    [CrossRef]
  15. R. E. Palmer, The CARSFT Computer Code for Calculating Coherent Anti-Stokes Raman Spectra: User and Programmer Information, Sandia National Laboratories Report SAND89-8206 (Sandia National Laboratories, 1989).
  16. S. Roy, W. D. Kulatilaka, S. V. Naik, N. M. Laurendeau, R. P. Lucht, and J. R. Gord, Appl. Phys. Lett. 89, 104105 (2006).
    [CrossRef]
  17. W. D. Kulatilaka, N. Chai, S. Roy, S. V. Naik, N. M. Laurendeau, R. P. Lucht, J. P. Kuehner, and J. R. Gord, "Effects of pressure variations on electronic-resonance-enhanced coherent anti-Stokes Raman scattering of nitric oxide," submitted to Opt. Commun.

2006

S. Roy, W. D. Kulatilaka, S. V. Naik, N. M. Laurendeau, R. P. Lucht, and J. R. Gord, Appl. Phys. Lett. 89, 104105 (2006).
[CrossRef]

2005

J. W. Daily, W. G. Besler, C. Schulz, V. Sick, and T. B. Settersten, AIAA J. 43, 458 (2005).
[CrossRef]

2004

S. V. Naik and N. M. Laurendeau, Combust. Sci. Technol. 176, 1809 (2004).
[CrossRef]

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, Combust. Flame 137, 523 (2004).
[CrossRef]

2003

S. F. Hanna, W. D. Kulatilaka, Z. Arp, T. Opatrný, M. O. Scully, J. P. Kuehner, and R. P. Lucht, Appl. Phys. Lett. 83, 1887 (2003).
[CrossRef]

W. G. Bessler, C. Schluz, T. Lee, J. B. Jefferies, and R. K. Hanson, Appl. Opt. 42, 4922 (2003).
[CrossRef] [PubMed]

2002

A. J. Grant, P. Ewart, and C. T. Stone, Appl. Phys. B 74, 105 (2002).
[CrossRef]

2000

C. S. Cooper and N. M. Laurendeau, Combust. Flame 123, 175 (2000).
[CrossRef]

1998

A. Pott, T. Dorek, J. Uhlenbusch, J. Ehlbeck, J. Höschele, and J. Steinwandel, J. Phys. D 31, 2485 (1998).
[CrossRef]

1996

B. Löfstedt, R. Fritzon, and M. Aldén, Appl. Opt. 35, 2140 (1996).
[CrossRef] [PubMed]

P. H. Paul, J. A. Gray, J. L. Durant, Jr., and J. W. Thoman, Jr., Chem. Phys. Lett. 259, 508 (1996).
[CrossRef]

Q. V. Nguyen, R. W. Dibble, C. D. Carter, G. J. Fiechtner, and R. S. Barlow, Combust. Flame 105, 499 (1996).
[CrossRef]

1989

Aldén, M.

Arp, Z.

S. F. Hanna, W. D. Kulatilaka, Z. Arp, T. Opatrný, M. O. Scully, J. P. Kuehner, and R. P. Lucht, Appl. Phys. Lett. 83, 1887 (2003).
[CrossRef]

Barlow, R. S.

Q. V. Nguyen, R. W. Dibble, C. D. Carter, G. J. Fiechtner, and R. S. Barlow, Combust. Flame 105, 499 (1996).
[CrossRef]

Besler, W. G.

J. W. Daily, W. G. Besler, C. Schulz, V. Sick, and T. B. Settersten, AIAA J. 43, 458 (2005).
[CrossRef]

Bessler, W. G.

Carter, C. D.

Q. V. Nguyen, R. W. Dibble, C. D. Carter, G. J. Fiechtner, and R. S. Barlow, Combust. Flame 105, 499 (1996).
[CrossRef]

Chai, N.

W. D. Kulatilaka, N. Chai, S. Roy, S. V. Naik, N. M. Laurendeau, R. P. Lucht, J. P. Kuehner, and J. R. Gord, "Effects of pressure variations on electronic-resonance-enhanced coherent anti-Stokes Raman scattering of nitric oxide," submitted to Opt. Commun.

Cooper, C. S.

C. S. Cooper and N. M. Laurendeau, Combust. Flame 123, 175 (2000).
[CrossRef]

Crosley, D. R.

Daily, J. W.

J. W. Daily, W. G. Besler, C. Schulz, V. Sick, and T. B. Settersten, AIAA J. 43, 458 (2005).
[CrossRef]

Dibble, R. W.

Q. V. Nguyen, R. W. Dibble, C. D. Carter, G. J. Fiechtner, and R. S. Barlow, Combust. Flame 105, 499 (1996).
[CrossRef]

Dorek, T.

A. Pott, T. Dorek, J. Uhlenbusch, J. Ehlbeck, J. Höschele, and J. Steinwandel, J. Phys. D 31, 2485 (1998).
[CrossRef]

Durant, J. L.

P. H. Paul, J. A. Gray, J. L. Durant, Jr., and J. W. Thoman, Jr., Chem. Phys. Lett. 259, 508 (1996).
[CrossRef]

Ehlbeck, J.

A. Pott, T. Dorek, J. Uhlenbusch, J. Ehlbeck, J. Höschele, and J. Steinwandel, J. Phys. D 31, 2485 (1998).
[CrossRef]

Ewart, P.

A. J. Grant, P. Ewart, and C. T. Stone, Appl. Phys. B 74, 105 (2002).
[CrossRef]

Farrow, R. L.

R. L. Vander Wal, R. L. Farrow, and D. J. Rakestraw, in Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, 1992), p. 1653.
[CrossRef]

Fiechtner, G. J.

Q. V. Nguyen, R. W. Dibble, C. D. Carter, G. J. Fiechtner, and R. S. Barlow, Combust. Flame 105, 499 (1996).
[CrossRef]

Fritzon, R.

Gord, J. R.

S. Roy, W. D. Kulatilaka, S. V. Naik, N. M. Laurendeau, R. P. Lucht, and J. R. Gord, Appl. Phys. Lett. 89, 104105 (2006).
[CrossRef]

W. D. Kulatilaka, N. Chai, S. Roy, S. V. Naik, N. M. Laurendeau, R. P. Lucht, J. P. Kuehner, and J. R. Gord, "Effects of pressure variations on electronic-resonance-enhanced coherent anti-Stokes Raman scattering of nitric oxide," submitted to Opt. Commun.

Grant, A. J.

A. J. Grant, P. Ewart, and C. T. Stone, Appl. Phys. B 74, 105 (2002).
[CrossRef]

Gray, J. A.

P. H. Paul, J. A. Gray, J. L. Durant, Jr., and J. W. Thoman, Jr., Chem. Phys. Lett. 259, 508 (1996).
[CrossRef]

Hanna, S. F.

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, Combust. Flame 137, 523 (2004).
[CrossRef]

S. F. Hanna, W. D. Kulatilaka, Z. Arp, T. Opatrný, M. O. Scully, J. P. Kuehner, and R. P. Lucht, Appl. Phys. Lett. 83, 1887 (2003).
[CrossRef]

Hanson, R. K.

Höschele, J.

A. Pott, T. Dorek, J. Uhlenbusch, J. Ehlbeck, J. Höschele, and J. Steinwandel, J. Phys. D 31, 2485 (1998).
[CrossRef]

Jefferies, J. B.

Jeffries, J. B.

Katta, V. R.

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, Combust. Flame 137, 523 (2004).
[CrossRef]

V. R. Katta, Innovative Scientific Solutions, Inc., 2766 Indian Ripple Road, Dayton, Ohio 45440 (personal communication).

Kuehner, J. P.

S. F. Hanna, W. D. Kulatilaka, Z. Arp, T. Opatrný, M. O. Scully, J. P. Kuehner, and R. P. Lucht, Appl. Phys. Lett. 83, 1887 (2003).
[CrossRef]

W. D. Kulatilaka, N. Chai, S. Roy, S. V. Naik, N. M. Laurendeau, R. P. Lucht, J. P. Kuehner, and J. R. Gord, "Effects of pressure variations on electronic-resonance-enhanced coherent anti-Stokes Raman scattering of nitric oxide," submitted to Opt. Commun.

Kulatilaka, W. D.

S. Roy, W. D. Kulatilaka, S. V. Naik, N. M. Laurendeau, R. P. Lucht, and J. R. Gord, Appl. Phys. Lett. 89, 104105 (2006).
[CrossRef]

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, Combust. Flame 137, 523 (2004).
[CrossRef]

S. F. Hanna, W. D. Kulatilaka, Z. Arp, T. Opatrný, M. O. Scully, J. P. Kuehner, and R. P. Lucht, Appl. Phys. Lett. 83, 1887 (2003).
[CrossRef]

W. D. Kulatilaka, N. Chai, S. Roy, S. V. Naik, N. M. Laurendeau, R. P. Lucht, J. P. Kuehner, and J. R. Gord, "Effects of pressure variations on electronic-resonance-enhanced coherent anti-Stokes Raman scattering of nitric oxide," submitted to Opt. Commun.

Laurendeau, N. M.

S. Roy, W. D. Kulatilaka, S. V. Naik, N. M. Laurendeau, R. P. Lucht, and J. R. Gord, Appl. Phys. Lett. 89, 104105 (2006).
[CrossRef]

S. V. Naik and N. M. Laurendeau, Combust. Sci. Technol. 176, 1809 (2004).
[CrossRef]

C. S. Cooper and N. M. Laurendeau, Combust. Flame 123, 175 (2000).
[CrossRef]

W. D. Kulatilaka, N. Chai, S. Roy, S. V. Naik, N. M. Laurendeau, R. P. Lucht, J. P. Kuehner, and J. R. Gord, "Effects of pressure variations on electronic-resonance-enhanced coherent anti-Stokes Raman scattering of nitric oxide," submitted to Opt. Commun.

Lee, T.

Löfstedt, B.

Lucht, R. P.

S. Roy, W. D. Kulatilaka, S. V. Naik, N. M. Laurendeau, R. P. Lucht, and J. R. Gord, Appl. Phys. Lett. 89, 104105 (2006).
[CrossRef]

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, Combust. Flame 137, 523 (2004).
[CrossRef]

S. F. Hanna, W. D. Kulatilaka, Z. Arp, T. Opatrný, M. O. Scully, J. P. Kuehner, and R. P. Lucht, Appl. Phys. Lett. 83, 1887 (2003).
[CrossRef]

W. D. Kulatilaka, N. Chai, S. Roy, S. V. Naik, N. M. Laurendeau, R. P. Lucht, J. P. Kuehner, and J. R. Gord, "Effects of pressure variations on electronic-resonance-enhanced coherent anti-Stokes Raman scattering of nitric oxide," submitted to Opt. Commun.

Naik, S. V.

S. Roy, W. D. Kulatilaka, S. V. Naik, N. M. Laurendeau, R. P. Lucht, and J. R. Gord, Appl. Phys. Lett. 89, 104105 (2006).
[CrossRef]

S. V. Naik and N. M. Laurendeau, Combust. Sci. Technol. 176, 1809 (2004).
[CrossRef]

W. D. Kulatilaka, N. Chai, S. Roy, S. V. Naik, N. M. Laurendeau, R. P. Lucht, J. P. Kuehner, and J. R. Gord, "Effects of pressure variations on electronic-resonance-enhanced coherent anti-Stokes Raman scattering of nitric oxide," submitted to Opt. Commun.

Nguyen, Q. V.

Q. V. Nguyen, R. W. Dibble, C. D. Carter, G. J. Fiechtner, and R. S. Barlow, Combust. Flame 105, 499 (1996).
[CrossRef]

Opatrný, T.

S. F. Hanna, W. D. Kulatilaka, Z. Arp, T. Opatrný, M. O. Scully, J. P. Kuehner, and R. P. Lucht, Appl. Phys. Lett. 83, 1887 (2003).
[CrossRef]

Palmer, R. E.

R. E. Palmer, The CARSFT Computer Code for Calculating Coherent Anti-Stokes Raman Spectra: User and Programmer Information, Sandia National Laboratories Report SAND89-8206 (Sandia National Laboratories, 1989).

Paul, P. H.

P. H. Paul, J. A. Gray, J. L. Durant, Jr., and J. W. Thoman, Jr., Chem. Phys. Lett. 259, 508 (1996).
[CrossRef]

Pott, A.

A. Pott, T. Dorek, J. Uhlenbusch, J. Ehlbeck, J. Höschele, and J. Steinwandel, J. Phys. D 31, 2485 (1998).
[CrossRef]

Rakestraw, D. J.

R. L. Vander Wal, R. L. Farrow, and D. J. Rakestraw, in Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, 1992), p. 1653.
[CrossRef]

Roy, S.

S. Roy, W. D. Kulatilaka, S. V. Naik, N. M. Laurendeau, R. P. Lucht, and J. R. Gord, Appl. Phys. Lett. 89, 104105 (2006).
[CrossRef]

W. D. Kulatilaka, N. Chai, S. Roy, S. V. Naik, N. M. Laurendeau, R. P. Lucht, J. P. Kuehner, and J. R. Gord, "Effects of pressure variations on electronic-resonance-enhanced coherent anti-Stokes Raman scattering of nitric oxide," submitted to Opt. Commun.

Schluz, C.

Schulz, C.

J. W. Daily, W. G. Besler, C. Schulz, V. Sick, and T. B. Settersten, AIAA J. 43, 458 (2005).
[CrossRef]

Scully, M. O.

S. F. Hanna, W. D. Kulatilaka, Z. Arp, T. Opatrný, M. O. Scully, J. P. Kuehner, and R. P. Lucht, Appl. Phys. Lett. 83, 1887 (2003).
[CrossRef]

Settersten, T. B.

J. W. Daily, W. G. Besler, C. Schulz, V. Sick, and T. B. Settersten, AIAA J. 43, 458 (2005).
[CrossRef]

Sick, V.

J. W. Daily, W. G. Besler, C. Schulz, V. Sick, and T. B. Settersten, AIAA J. 43, 458 (2005).
[CrossRef]

Steinwandel, J.

A. Pott, T. Dorek, J. Uhlenbusch, J. Ehlbeck, J. Höschele, and J. Steinwandel, J. Phys. D 31, 2485 (1998).
[CrossRef]

Stone, C. T.

A. J. Grant, P. Ewart, and C. T. Stone, Appl. Phys. B 74, 105 (2002).
[CrossRef]

Thoman, J. W.

P. H. Paul, J. A. Gray, J. L. Durant, Jr., and J. W. Thoman, Jr., Chem. Phys. Lett. 259, 508 (1996).
[CrossRef]

Uhlenbusch, J.

A. Pott, T. Dorek, J. Uhlenbusch, J. Ehlbeck, J. Höschele, and J. Steinwandel, J. Phys. D 31, 2485 (1998).
[CrossRef]

Vander Wal, R. L.

R. L. Vander Wal, R. L. Farrow, and D. J. Rakestraw, in Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, 1992), p. 1653.
[CrossRef]

Wysong, I. J.

AIAA J.

J. W. Daily, W. G. Besler, C. Schulz, V. Sick, and T. B. Settersten, AIAA J. 43, 458 (2005).
[CrossRef]

Appl. Opt.

Appl. Phys. B

A. J. Grant, P. Ewart, and C. T. Stone, Appl. Phys. B 74, 105 (2002).
[CrossRef]

Appl. Phys. Lett.

S. F. Hanna, W. D. Kulatilaka, Z. Arp, T. Opatrný, M. O. Scully, J. P. Kuehner, and R. P. Lucht, Appl. Phys. Lett. 83, 1887 (2003).
[CrossRef]

S. Roy, W. D. Kulatilaka, S. V. Naik, N. M. Laurendeau, R. P. Lucht, and J. R. Gord, Appl. Phys. Lett. 89, 104105 (2006).
[CrossRef]

Chem. Phys. Lett.

P. H. Paul, J. A. Gray, J. L. Durant, Jr., and J. W. Thoman, Jr., Chem. Phys. Lett. 259, 508 (1996).
[CrossRef]

Combust. Flame

C. S. Cooper and N. M. Laurendeau, Combust. Flame 123, 175 (2000).
[CrossRef]

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, Combust. Flame 137, 523 (2004).
[CrossRef]

Q. V. Nguyen, R. W. Dibble, C. D. Carter, G. J. Fiechtner, and R. S. Barlow, Combust. Flame 105, 499 (1996).
[CrossRef]

Combust. Sci. Technol.

S. V. Naik and N. M. Laurendeau, Combust. Sci. Technol. 176, 1809 (2004).
[CrossRef]

J. Phys. D

A. Pott, T. Dorek, J. Uhlenbusch, J. Ehlbeck, J. Höschele, and J. Steinwandel, J. Phys. D 31, 2485 (1998).
[CrossRef]

Opt. Lett.

Other

W. D. Kulatilaka, N. Chai, S. Roy, S. V. Naik, N. M. Laurendeau, R. P. Lucht, J. P. Kuehner, and J. R. Gord, "Effects of pressure variations on electronic-resonance-enhanced coherent anti-Stokes Raman scattering of nitric oxide," submitted to Opt. Commun.

R. E. Palmer, The CARSFT Computer Code for Calculating Coherent Anti-Stokes Raman Spectra: User and Programmer Information, Sandia National Laboratories Report SAND89-8206 (Sandia National Laboratories, 1989).

V. R. Katta, Innovative Scientific Solutions, Inc., 2766 Indian Ripple Road, Dayton, Ohio 45440 (personal communication).

R. L. Vander Wal, R. L. Farrow, and D. J. Rakestraw, in Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, 1992), p. 1653.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Energy level diagram for NO ERE-CARS.

Fig. 2
Fig. 2

NO ERE-CARS experimental apparatus.

Fig. 3
Fig. 3

ERE-CARS spectra recorded at a height of 6 mm above the burner surface by seeding 0– 1000 ppm NO into an H 2 air flame at Φ = 1.0 stabilized over the Hencken burner. The spectra (c)–(f) are multiplied by the factors shown and plotted on the same scale. The spectral curve at the Raman shift of 1872.74 cm 1 corresponds to the Q 11 ( 13.5 ) Raman transition and the Q 11 ( 13.5 ) UV resonant transition at 44 , 234.2 cm 1 . The spectral line at the Raman shift of 1875.00 cm 1 corresponds to the Q 11 ( 7.5 ) Raman transition and the R 11 ( 7.5 ) UV resonant transition at 44 , 236.45 cm 1 .

Fig. 4
Fig. 4

Square root of integrated NO ERE-CARS signal as a function of NO concentration in NO -seeded H 2 air flame. The spectra shown in Fig. 3 were integrated as discussed in the text to obtain the data points.

Fig. 5
Fig. 5

NO ERE-CARS spectrum recorded at a height of 55 mm above the burner surface in a C 2 H 2 air flame at Φ = 1.6 stabilized on the Hencken burner. The flame was heavily sooting at the measurement location.

Metrics