Abstract

We have measured nitric oxide (NO) concentrations in flames by using electronic-resonance-enhanced coherent anti-Stokes Raman spectroscopy (ERE-CARS). Visible pump and Stokes beams were tuned to a Q-branch vibrational Raman resonance of NO. A UV probe beam was tuned into resonance with specific rotational transitions in the (v=1,v=0) vibrational band in the A2Σ+X2Π electronic transition, thus providing a substantial electronic-resonance enhancement of the resulting CARS signal. NO concentrations were measured at levels down to 50 parts in 106 in H2air flames at atmospheric pressure. NO was also detected in heavily sooting C2H2air flames at atmospheric pressure with minimal background interference.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription