Abstract

A 2D, square lattice, vectorial photonic crystal is formed by vectorial holography using an azo-dye-doped liquid-crystal material. Four coherent beams are interfered to generate a highly stable, switchable polarization holography structure. The formation of the vectorial lattice by the liquid-crystal molecular orientation is confirmed by diffraction pattern and polarization microscopy analysis. Simulations of the alignment and diffraction pattern are in good agreement with the experimental results. Polarization sensitive diffraction behavior is also consistent with the Kakichashvili model.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, J. Opt. Soc. Am. B 10, 283 (1993).
    [CrossRef]
  2. M. J. Escuti, J. Qi, and G. P. Crawford, Opt. Lett. 28, 522 (2003).
    [CrossRef] [PubMed]
  3. R. L. Sutherland, J. Opt. Soc. Am. B 19, 2995 (2002).
    [CrossRef]
  4. T. Todorov, L. Nikolova, and N. Tomova, Appl. Opt. 23, 4309 (1984).
    [CrossRef] [PubMed]
  5. L. M. Blinov, G. Cipparrone, and S. P. Palto, J. Nonlinear Opt. Phys. Mater. 7, 369 (1998).
    [CrossRef]
  6. S. G. Cloutier, D. A. Peyrot, T. V. Galstian, and R. A. Lessard, J. Opt. A 4, S228 (2002).
    [CrossRef]
  7. H. Sarkissian, B. Park, N. Tabirian, and B. Zeldovich, Mol. Cryst. Liq. Cryst. 451, 1 (2006).
    [CrossRef]
  8. J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, Appl. Phys. Lett. 85, 1671 (2004).
    [CrossRef]
  9. B. Wen, R. G. Petschek, and C. Rosenblatt, Appl. Opt. 41, 1246 (2002).
    [CrossRef] [PubMed]
  10. K. Ichimura, Chem. Rev. 100, 1847 (2000).
    [CrossRef]
  11. A. G. Chen and D. J. Brady, Opt. Lett. 17, 441 (1992).
    [CrossRef] [PubMed]
  12. S. P. Gorkhali, S. G. Cloutier, R. A. Pelcovits, and G. P. Crawford, Appl. Phys. Lett. 88, 251113 (2006).
    [CrossRef]
  13. S. Kakichashvili, Opt. Spectrosc. 52, 191 (1982).

2006 (2)

H. Sarkissian, B. Park, N. Tabirian, and B. Zeldovich, Mol. Cryst. Liq. Cryst. 451, 1 (2006).
[CrossRef]

S. P. Gorkhali, S. G. Cloutier, R. A. Pelcovits, and G. P. Crawford, Appl. Phys. Lett. 88, 251113 (2006).
[CrossRef]

2004 (1)

J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, Appl. Phys. Lett. 85, 1671 (2004).
[CrossRef]

2003 (1)

2002 (3)

2000 (1)

K. Ichimura, Chem. Rev. 100, 1847 (2000).
[CrossRef]

1998 (1)

L. M. Blinov, G. Cipparrone, and S. P. Palto, J. Nonlinear Opt. Phys. Mater. 7, 369 (1998).
[CrossRef]

1993 (1)

1992 (1)

1984 (1)

1982 (1)

S. Kakichashvili, Opt. Spectrosc. 52, 191 (1982).

Blinov, L. M.

L. M. Blinov, G. Cipparrone, and S. P. Palto, J. Nonlinear Opt. Phys. Mater. 7, 369 (1998).
[CrossRef]

Brady, D. J.

Chen, A. G.

Cipparrone, G.

L. M. Blinov, G. Cipparrone, and S. P. Palto, J. Nonlinear Opt. Phys. Mater. 7, 369 (1998).
[CrossRef]

Cloutier, S. G.

S. P. Gorkhali, S. G. Cloutier, R. A. Pelcovits, and G. P. Crawford, Appl. Phys. Lett. 88, 251113 (2006).
[CrossRef]

S. G. Cloutier, D. A. Peyrot, T. V. Galstian, and R. A. Lessard, J. Opt. A 4, S228 (2002).
[CrossRef]

Crawford, G. P.

S. P. Gorkhali, S. G. Cloutier, R. A. Pelcovits, and G. P. Crawford, Appl. Phys. Lett. 88, 251113 (2006).
[CrossRef]

J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, Appl. Phys. Lett. 85, 1671 (2004).
[CrossRef]

M. J. Escuti, J. Qi, and G. P. Crawford, Opt. Lett. 28, 522 (2003).
[CrossRef] [PubMed]

Eakin, J. N.

J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, Appl. Phys. Lett. 85, 1671 (2004).
[CrossRef]

Escuti, M. J.

Galstian, T. V.

S. G. Cloutier, D. A. Peyrot, T. V. Galstian, and R. A. Lessard, J. Opt. A 4, S228 (2002).
[CrossRef]

Gorkhali, S. P.

S. P. Gorkhali, S. G. Cloutier, R. A. Pelcovits, and G. P. Crawford, Appl. Phys. Lett. 88, 251113 (2006).
[CrossRef]

Ichimura, K.

K. Ichimura, Chem. Rev. 100, 1847 (2000).
[CrossRef]

Kakichashvili, S.

S. Kakichashvili, Opt. Spectrosc. 52, 191 (1982).

Lessard, R. A.

S. G. Cloutier, D. A. Peyrot, T. V. Galstian, and R. A. Lessard, J. Opt. A 4, S228 (2002).
[CrossRef]

Nikolova, L.

Palto, S. P.

L. M. Blinov, G. Cipparrone, and S. P. Palto, J. Nonlinear Opt. Phys. Mater. 7, 369 (1998).
[CrossRef]

Park, B.

H. Sarkissian, B. Park, N. Tabirian, and B. Zeldovich, Mol. Cryst. Liq. Cryst. 451, 1 (2006).
[CrossRef]

Pelcovits, R. A.

S. P. Gorkhali, S. G. Cloutier, R. A. Pelcovits, and G. P. Crawford, Appl. Phys. Lett. 88, 251113 (2006).
[CrossRef]

J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, Appl. Phys. Lett. 85, 1671 (2004).
[CrossRef]

Petschek, R. G.

Peyrot, D. A.

S. G. Cloutier, D. A. Peyrot, T. V. Galstian, and R. A. Lessard, J. Opt. A 4, S228 (2002).
[CrossRef]

Qi, J.

Radcliffe, M. D.

J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, Appl. Phys. Lett. 85, 1671 (2004).
[CrossRef]

Rosenblatt, C.

Sarkissian, H.

H. Sarkissian, B. Park, N. Tabirian, and B. Zeldovich, Mol. Cryst. Liq. Cryst. 451, 1 (2006).
[CrossRef]

Sutherland, R. L.

Tabirian, N.

H. Sarkissian, B. Park, N. Tabirian, and B. Zeldovich, Mol. Cryst. Liq. Cryst. 451, 1 (2006).
[CrossRef]

Todorov, T.

Tomova, N.

Wen, B.

Xie, Y.

J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, Appl. Phys. Lett. 85, 1671 (2004).
[CrossRef]

Yablonovitch, E.

Zeldovich, B.

H. Sarkissian, B. Park, N. Tabirian, and B. Zeldovich, Mol. Cryst. Liq. Cryst. 451, 1 (2006).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

S. P. Gorkhali, S. G. Cloutier, R. A. Pelcovits, and G. P. Crawford, Appl. Phys. Lett. 88, 251113 (2006).
[CrossRef]

J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, Appl. Phys. Lett. 85, 1671 (2004).
[CrossRef]

Chem. Rev. (1)

K. Ichimura, Chem. Rev. 100, 1847 (2000).
[CrossRef]

J. Nonlinear Opt. Phys. Mater. (1)

L. M. Blinov, G. Cipparrone, and S. P. Palto, J. Nonlinear Opt. Phys. Mater. 7, 369 (1998).
[CrossRef]

J. Opt. A (1)

S. G. Cloutier, D. A. Peyrot, T. V. Galstian, and R. A. Lessard, J. Opt. A 4, S228 (2002).
[CrossRef]

J. Opt. Soc. Am. B (2)

Mol. Cryst. Liq. Cryst. (1)

H. Sarkissian, B. Park, N. Tabirian, and B. Zeldovich, Mol. Cryst. Liq. Cryst. 451, 1 (2006).
[CrossRef]

Opt. Lett. (2)

Opt. Spectrosc. (1)

S. Kakichashvili, Opt. Spectrosc. 52, 191 (1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Computed E-field vector profile superimposed on top of the isointensity profile of a 2D square lattice generated by interfering four symmetrical p-polarized beams. (b) Azo dye and LC orientation in the presence of the vector field. (c) Computed intensity profile sample between crossed polarizers compared with the (d) transmission microscopy image of the sample between cross polarizers.

Fig. 2
Fig. 2

(a) Zero- and ± first-order diffraction spots as a function of applied voltage. Inset: diffraction pattern produced by a 2D square lattice sample by using a red wavelength laser λ = 633 nm . Transmission energy as a function of input (b) linear and (c) elliptical polarization.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δ ϵ x = κ s S 0 + κ v S 1 ,
Δ ϵ y = κ s S 0 κ v S 1 ,
S 0 = E x 2 + E y 2 ,
S 1 = E x 2 E y 2 .
η E ¯ = A m = m = n = n = J m ( s ) J n ( s ) e i K ( m + n ) x e i K ( m n ) y ,
A + = κ 2 A x 2 + κ 2 A y 2 ,
A = κ 2 A x 2 + κ 2 A y 2 ,
A in = [ A x A y e i ϕ ] .

Metrics