Abstract

The concept of a spectrum-modifying layer is proposed for the design of a silicon-based guided-mode resonance filter. To realize such a novel device, a grating and waveguide structures are fabricated simultaneously in a suspended silicon nitride membrane. The cladding layer of the silicon substrate is replaced by the silicon dioxide membrane to reduce the absorption loss of the bulky substrate. Moreover, the silicon dioxide membrane plays a role in modifying the spectral response. According to the experimental results of the proposed structures, symmetrical line shapes and improved sidebands of nonresonance are demonstrated.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, and R. Magnusson, Opt. Lett. 23, 1556 (1998).
    [CrossRef]
  2. S. T. Thurman and G. M. Morris, Appl. Opt. 42, 3225 (2003).
    [CrossRef] [PubMed]
  3. D. Rosenblatt, A. Sharon, and A. A. Frisem, IEEE J. Quantum Electron. 33, 2038 (1997).
    [CrossRef]
  4. T. Katchalski, G. Levy-Yurista, and A. A. Frisem, Opt. Express 13, 4645 (2005).
    [CrossRef] [PubMed]
  5. N. Dudovich, G. Levy-Yurista, A. Sharon, and A. A. Frisem, IEEE J. Quantum Electron. 37, 1030 (2001).
    [CrossRef]
  6. R. Magnusson and Y. Ding, in Proc. SPIE 5931, 593101 (2005).
    [CrossRef]
  7. C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, IEEE Photon. Technol. Lett. 16, 1676 (2004).
    [CrossRef]
  8. D. Kim and K. Burke, Appl. Opt. 42, 6321 (2003).
    [CrossRef] [PubMed]

2005 (2)

2004 (1)

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, IEEE Photon. Technol. Lett. 16, 1676 (2004).
[CrossRef]

2003 (2)

2001 (1)

N. Dudovich, G. Levy-Yurista, A. Sharon, and A. A. Frisem, IEEE J. Quantum Electron. 37, 1030 (2001).
[CrossRef]

1998 (1)

1997 (1)

D. Rosenblatt, A. Sharon, and A. A. Frisem, IEEE J. Quantum Electron. 33, 2038 (1997).
[CrossRef]

Burke, K.

Chang-Hasnain, C. J.

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, IEEE Photon. Technol. Lett. 16, 1676 (2004).
[CrossRef]

Chen, L.

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, IEEE Photon. Technol. Lett. 16, 1676 (2004).
[CrossRef]

Ding, Y.

R. Magnusson and Y. Ding, in Proc. SPIE 5931, 593101 (2005).
[CrossRef]

Dudovich, N.

N. Dudovich, G. Levy-Yurista, A. Sharon, and A. A. Frisem, IEEE J. Quantum Electron. 37, 1030 (2001).
[CrossRef]

Frisem, A. A.

T. Katchalski, G. Levy-Yurista, and A. A. Frisem, Opt. Express 13, 4645 (2005).
[CrossRef] [PubMed]

N. Dudovich, G. Levy-Yurista, A. Sharon, and A. A. Frisem, IEEE J. Quantum Electron. 37, 1030 (2001).
[CrossRef]

D. Rosenblatt, A. Sharon, and A. A. Frisem, IEEE J. Quantum Electron. 33, 2038 (1997).
[CrossRef]

Huang, M. C. Y.

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, IEEE Photon. Technol. Lett. 16, 1676 (2004).
[CrossRef]

Katchalski, T.

Kim, D.

Levy-Yurista, G.

T. Katchalski, G. Levy-Yurista, and A. A. Frisem, Opt. Express 13, 4645 (2005).
[CrossRef] [PubMed]

N. Dudovich, G. Levy-Yurista, A. Sharon, and A. A. Frisem, IEEE J. Quantum Electron. 37, 1030 (2001).
[CrossRef]

Liu, Z. S.

Magnusson, R.

Mateus, C. F. R.

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, IEEE Photon. Technol. Lett. 16, 1676 (2004).
[CrossRef]

Morris, G. M.

Rosenblatt, D.

D. Rosenblatt, A. Sharon, and A. A. Frisem, IEEE J. Quantum Electron. 33, 2038 (1997).
[CrossRef]

Sharon, A.

N. Dudovich, G. Levy-Yurista, A. Sharon, and A. A. Frisem, IEEE J. Quantum Electron. 37, 1030 (2001).
[CrossRef]

D. Rosenblatt, A. Sharon, and A. A. Frisem, IEEE J. Quantum Electron. 33, 2038 (1997).
[CrossRef]

Shin, D.

Suzuki, Y.

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, IEEE Photon. Technol. Lett. 16, 1676 (2004).
[CrossRef]

Thurman, S. T.

Tibuleac, S.

Young, P. P.

Appl. Opt. (2)

IEEE J. Quantum Electron. (2)

D. Rosenblatt, A. Sharon, and A. A. Frisem, IEEE J. Quantum Electron. 33, 2038 (1997).
[CrossRef]

N. Dudovich, G. Levy-Yurista, A. Sharon, and A. A. Frisem, IEEE J. Quantum Electron. 37, 1030 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, IEEE Photon. Technol. Lett. 16, 1676 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (1)

R. Magnusson and Y. Ding, in Proc. SPIE 5931, 593101 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic view of the silicon-based GMR device. The structure is fabricated in suspended SiN x and SiO 2 membranes by bulk micromachining technology.

Fig. 2
Fig. 2

Normalized measured transmittance spectrum of the silicon-based GMR filter as a function of wavelength under normal incidence and TM polarization.

Fig. 3
Fig. 3

Structural parameters of the proposed silicon-based GMR filter.

Fig. 4
Fig. 4

Simulated spectrum of GMR filter without and with a lower SiO 2 cladding layer, by rigorous coupled-wave analysis and effective-medium theory.

Fig. 5
Fig. 5

Measured spectral responses of transmittance of proposed GMR filters for different SiO 2 thicknesses of 0, 250, and 500 nm . The dashed curves are compared with the results in Fig. 4

Metrics