Abstract

A two-dimensional quasi-phase-matched structure is realized in a noncollinear, nondegenerate periodically poled KTiOPO4 parametric oscillator by utilizing the mutual coherence of two noncollinear pump beams. The mutually coherent pump beams form an interference pattern inside the crystal that is directed perpendicular to the existing quasi-phase-matched grating vector and acts as a parametric gain grating. The cavity itself supports two signal wavelengths around 1550nm with tunable separation, while the gain grating reduces the operational threshold of the oscillator. Furthermore, with this two-dimensional quasi-phase-matched structure, we can demonstrate the generation of new spectral components through multiple χ(2):χ(2)-cascaded four-wave mixing processes.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Fragemann, V. Pasiskevicius, and F. Laurell, Opt. Lett. 30, 2296 (2005).
    [CrossRef] [PubMed]
  2. S. M. Saltiel, A. A. Sukhorukov, and Y. Kivshar, in Progress in Optics, E.Wolf, ed. (Elsevier, 2005), Vol. 47, pp. 1-73.
    [CrossRef]
  3. M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, Opt. Lett. 24, 1157 (1999).
    [CrossRef]
  4. N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, Phys. Rev. Lett. 84, 4345 (2000).
    [CrossRef] [PubMed]
  5. A. Chowdhury, Ch. Staus, B. F. Boland, Th. F. Kuech, and L. McCaughan, Opt. Lett. 26, 1353 (2001).
    [CrossRef]
  6. E. Yablonovitch, C. Flytzanis, and N. Bloembergen, Phys. Rev. Lett. 29, 865 (1972).
    [CrossRef]
  7. A. Varanavicius, A. Dubietis, A. Berzanskis, R. Danielius, and A. Piskarskas, Opt. Lett. 22, 1603 (1997).
    [CrossRef]
  8. R. Danielius, P. Di Trapani, A. Dubietis, A. Piskarskas, D. Podenas, and G. P. Banfi, Opt. Lett. 18, 574 (1993).
    [CrossRef] [PubMed]
  9. R. Danielius, A. Dubietis, and A. Piskarskas, Opt. Commun. 133, 277 (1997).
    [CrossRef]
  10. X. Zhang and H. Giessen, Appl. Phys. B: Photophys. Laser Chem. 79, 441 (2004).
  11. V. Smilgevicius, A. Piskarskas, V. Pasiskevicius, J. Hellström, S. Wang, and F. Laurell, Opt. Commun. 173, 365 (2000).
    [CrossRef]

2005

2004

X. Zhang and H. Giessen, Appl. Phys. B: Photophys. Laser Chem. 79, 441 (2004).

2001

2000

V. Smilgevicius, A. Piskarskas, V. Pasiskevicius, J. Hellström, S. Wang, and F. Laurell, Opt. Commun. 173, 365 (2000).
[CrossRef]

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, Phys. Rev. Lett. 84, 4345 (2000).
[CrossRef] [PubMed]

1999

1997

1993

1972

E. Yablonovitch, C. Flytzanis, and N. Bloembergen, Phys. Rev. Lett. 29, 865 (1972).
[CrossRef]

Banfi, G. P.

Berzanskis, A.

Bloembergen, N.

E. Yablonovitch, C. Flytzanis, and N. Bloembergen, Phys. Rev. Lett. 29, 865 (1972).
[CrossRef]

Boland, B. F.

Brener, I.

Broderick, N. G. R.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, Phys. Rev. Lett. 84, 4345 (2000).
[CrossRef] [PubMed]

Chou, M. H.

Chowdhury, A.

Danielius, R.

Di Trapani, P.

Dubietis, A.

Fejer, M. M.

Flytzanis, C.

E. Yablonovitch, C. Flytzanis, and N. Bloembergen, Phys. Rev. Lett. 29, 865 (1972).
[CrossRef]

Fragemann, A.

Giessen, H.

X. Zhang and H. Giessen, Appl. Phys. B: Photophys. Laser Chem. 79, 441 (2004).

Hanna, D. C.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, Phys. Rev. Lett. 84, 4345 (2000).
[CrossRef] [PubMed]

Hellström, J.

V. Smilgevicius, A. Piskarskas, V. Pasiskevicius, J. Hellström, S. Wang, and F. Laurell, Opt. Commun. 173, 365 (2000).
[CrossRef]

Kivshar, Y.

S. M. Saltiel, A. A. Sukhorukov, and Y. Kivshar, in Progress in Optics, E.Wolf, ed. (Elsevier, 2005), Vol. 47, pp. 1-73.
[CrossRef]

Kuech, Th. F.

Laurell, F.

A. Fragemann, V. Pasiskevicius, and F. Laurell, Opt. Lett. 30, 2296 (2005).
[CrossRef] [PubMed]

V. Smilgevicius, A. Piskarskas, V. Pasiskevicius, J. Hellström, S. Wang, and F. Laurell, Opt. Commun. 173, 365 (2000).
[CrossRef]

McCaughan, L.

Offerhaus, H. L.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, Phys. Rev. Lett. 84, 4345 (2000).
[CrossRef] [PubMed]

Parameswaran, K. R.

Pasiskevicius, V.

A. Fragemann, V. Pasiskevicius, and F. Laurell, Opt. Lett. 30, 2296 (2005).
[CrossRef] [PubMed]

V. Smilgevicius, A. Piskarskas, V. Pasiskevicius, J. Hellström, S. Wang, and F. Laurell, Opt. Commun. 173, 365 (2000).
[CrossRef]

Piskarskas, A.

V. Smilgevicius, A. Piskarskas, V. Pasiskevicius, J. Hellström, S. Wang, and F. Laurell, Opt. Commun. 173, 365 (2000).
[CrossRef]

R. Danielius, A. Dubietis, and A. Piskarskas, Opt. Commun. 133, 277 (1997).
[CrossRef]

A. Varanavicius, A. Dubietis, A. Berzanskis, R. Danielius, and A. Piskarskas, Opt. Lett. 22, 1603 (1997).
[CrossRef]

R. Danielius, P. Di Trapani, A. Dubietis, A. Piskarskas, D. Podenas, and G. P. Banfi, Opt. Lett. 18, 574 (1993).
[CrossRef] [PubMed]

Podenas, D.

Richardson, D. J.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, Phys. Rev. Lett. 84, 4345 (2000).
[CrossRef] [PubMed]

Ross, G. W.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, Phys. Rev. Lett. 84, 4345 (2000).
[CrossRef] [PubMed]

Saltiel, S. M.

S. M. Saltiel, A. A. Sukhorukov, and Y. Kivshar, in Progress in Optics, E.Wolf, ed. (Elsevier, 2005), Vol. 47, pp. 1-73.
[CrossRef]

Smilgevicius, V.

V. Smilgevicius, A. Piskarskas, V. Pasiskevicius, J. Hellström, S. Wang, and F. Laurell, Opt. Commun. 173, 365 (2000).
[CrossRef]

Staus, Ch.

Sukhorukov, A. A.

S. M. Saltiel, A. A. Sukhorukov, and Y. Kivshar, in Progress in Optics, E.Wolf, ed. (Elsevier, 2005), Vol. 47, pp. 1-73.
[CrossRef]

Varanavicius, A.

Wang, S.

V. Smilgevicius, A. Piskarskas, V. Pasiskevicius, J. Hellström, S. Wang, and F. Laurell, Opt. Commun. 173, 365 (2000).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, C. Flytzanis, and N. Bloembergen, Phys. Rev. Lett. 29, 865 (1972).
[CrossRef]

Zhang, X.

X. Zhang and H. Giessen, Appl. Phys. B: Photophys. Laser Chem. 79, 441 (2004).

Appl. Phys. B: Photophys. Laser Chem.

X. Zhang and H. Giessen, Appl. Phys. B: Photophys. Laser Chem. 79, 441 (2004).

Opt. Commun.

V. Smilgevicius, A. Piskarskas, V. Pasiskevicius, J. Hellström, S. Wang, and F. Laurell, Opt. Commun. 173, 365 (2000).
[CrossRef]

R. Danielius, A. Dubietis, and A. Piskarskas, Opt. Commun. 133, 277 (1997).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, Phys. Rev. Lett. 84, 4345 (2000).
[CrossRef] [PubMed]

E. Yablonovitch, C. Flytzanis, and N. Bloembergen, Phys. Rev. Lett. 29, 865 (1972).
[CrossRef]

Other

S. M. Saltiel, A. A. Sukhorukov, and Y. Kivshar, in Progress in Optics, E.Wolf, ed. (Elsevier, 2005), Vol. 47, pp. 1-73.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Noncollinear interaction in a two-beam-pumped OPO. x, y, and z mark the PPKTP crystal axes.

Fig. 2
Fig. 2

Experimental setup of the OPO with a CCD camera picture of the pumps’ interference pattern. The axes correspond to the PPKTP crystal axes.

Fig. 3
Fig. 3

Data points, pump threshold as a function of time delay of P 1 with respect to P 2 . Solid curve, Gaussian fit to the data points. A mutual coherence length of 140 ps ( e 2 intensity) could be calculated.

Fig. 4
Fig. 4

(a) Dashed curve, symmetric cavity configuration ( α = 0 ) , both pump waves generate signal wavelengths at 1551 nm . Solid curve, rotated cavity ( α = 7.5 mrad ) , signals without gain-grating phase matching. The spectra are averaged 5 times. (b) Cascaded FWM signal spectrum due to coherent coupling between the interacting beams at a cavity angle of α = 3 mrad . The spectrum has not been averaged.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

2 k p sin θ = k i 2 ( sin φ i 2 + sin φ i 1 ) + δ ω s ( sin φ i 1 v g i sin α v g s ) ,

Metrics